Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 9 . Đường thẳng d cắt mặt cầu (S) tại hai điểm A và B biết tiếp diện của (S) tại A và B vuông góc. Khi đó độ dài AB là:
A. 9 2
B. 3
C. 3 2
D. 3 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Mặt cầu (S) có tâm I(a; b; c) và bán kính R thì có phương trình (x-a)²+(y-b)²+(z-c)²=R².
Theo đề bài ta có R²=9=> R=3.
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))
Đáp án C
Cắt mặt cầu và 2 tiếp diện bằng một mặt phẳng qua tâm và đường thẳng d. Thiết diện như hình vẽ bên.
ACIB là hình vuông (do I A C ^ = I B C ^ = A C B ^ = 90 ° và I A = I B = I C = R = 3 )
⇒ A B = 3 2