K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

Đáp án A.

Phương trình hoành độ giao điểm của đồ thị (C) với đường thẳng đã cho là

x − 1 1 − 2 x = x + m ⇔ x − 1 = 1 − 2 x x + m

 (do x = 1 2  không là nghiệm)

  ⇔ 2 x 2 + 2 m x − m − 1 = 0 (*).

Đồ thị (C) với đường thẳng đã cho cắt nhau tại hai điểm phân biệt khi và chỉ khi (*) có hai nghiệm phân biệt ⇔ m 2 + 2 m + 2 > 0  (nghiệm đúng với mọi m).

Giả sử E x 1 ; y 1 , F x 2 ; y 2  thì x 1 , x 2  là hai nghiệm của (*).

Suy ra x 1 + x 2 = − m ; x 1 x 2 = − m + 1 2 .

Do đó 2 x 1 − 1 2 x 2 − 1 = 4 x 1 x 2 − 2 x 1 + x 2 + 1 = − 1 .

Ta có

k 1 = − 1 2 x 1 − 2 2 ; k 2 = − 1 2 x 2 − 1 2

 nên k 1 k 2 = 1 .

Suy ra S ≥ 2 k 1 2 k 2 2 − 3 k 1 k 2 = − 1 . Dấu bằng xảy ra khi k 1 = − 1 k 2 = − 1 ⇒ x 1 = 0 x 2 = 1  hoặc x 1 = 1 x 2 = 0 ⇒ m = − 1 . Vậy S đạt giá trị nhỏ nhất bằng ‒1.

10 tháng 10 2019

Đáp án A.

18 tháng 11 2018

Chọn đáp án A

Hoành độ giao điểm của đường thẳng ∆ và đồ thị (C) là nghiệm của phương trình

Đường thẳng  cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt khác 2.

6 tháng 11 2017

Đáp án B

TXĐ: D = ℝ \ 2 .

Ta có phương trình hoành độ giao điểm: x − 3 x − 2 = − x + k , x ≠ 2

Để đường thẳng Δ  cắt đồ thị C  tại hai điểm phân biệt thì phương trình  có hai nghiệm phân biệt khác 2 , khi đó

Δ = k + 1 2 − 4 2 k − 3 > 0 2 2 − k + 1 .2 + 2 k − 3 ≠ 0 ⇔ k 2 − 6 k + 13 > 0 − 1 ≠ 0 ⇔ k − 3 2 + 4 > 0 , ∀ k ∈ ℝ .

15 tháng 2 2018

Đáp án B

18 tháng 10 2017

Chọn C.

Phương pháp

Xét phương trình hoành độ giao điểm.

Đường thẳng cắt đồ thị (C) tại hai điểm phân biệt nếu phương trình hoành độ giao điểm có hai nghiệm phân biệt.

Cách giải:

ĐKXĐ: x  ≠ 1

Xét phương trình hoành độ giao điểm  x - 1 x + 1 = -x + m (*)

Với  -1 thì (*)  ⇔ x - 1 = (x+1)(-x+m)

 

Đường thẳng y = -x + m cắt đồ thị  tại hai điểm phân biệt phương trình (**) có hai nghiệm phân biệt khác -1.

Vậy m ∈ ℝ

9 tháng 11 2017

2 tháng 6 2017

17 tháng 9 2018

26 tháng 8 2019