K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2016

1mk chịu 

2) 

khoảng cách : 3 

số số hạng : (2006-2):2+1=669 

tổng dãy :(2006+2)x669:2=671676

24 tháng 1 2016

622

tick nha

2 tháng 10 2016

a)S= (1-2-3+4)+(5-6-7+8)+....+(2001-2002-2003+2004)=0+0+0+..+000000000000= 0

b)Tương tự a nhưng nhóm 5 sô

25 tháng 10 2021

o

 

 

 

 

6 tháng 1 2016

a) Ta có: S = 1 - 2 - 3 + 4 + 5 - 6 - 7+  8 + ... + 2001 - 2002 - 2003 + 2004

\(\Rightarrow\)              S = (1 - 2 - 3 + 4) + (5 - 6 - 7+  8) + ... + (2001 - 2002 - 2003 + 2004)

\(\Rightarrow\)             S = (-4 + 4) + (-8 + 8) + ... + (-2004 + 2004)

\(\Rightarrow\)              S = 0 + 0 + ... + 0

\(\Rightarrow\)              S = 0

6 tháng 1 2016

Câu b): sAI ĐỀ

3 tháng 7 2015

a) Số số hạng là : (n - 1) + 1 = n (số)

Tổng trên = (n + 1) x n : 2

b) Số số hạng là : (2n + 1 - 1) : 2 + 1 = 2n : 2 + 1 = n + 1 (số)

Tổng trên = (2n + 1 + 1) x (n + 1) : 2 = (2n + 2) x (n + 1) : 2

c) Số số hạng là : (2006 - 2) : 3 + 1 = 669 (số)

Tổng trên = (2006 + 2) x 669 : 2 = 671676

e) Số số hạng là : (2005 - 1) : 3 + 1 = 669 (số)

Tổng trên = (2005 + 1) x 669 : 2 = 671007

g) Số số hạng là : (2001 - 1) : 4 + 1 = 501 (số)

Tổng trên = (2001 + 1) x 501 : 2 = 501501

c) Số số hạng của dãy là:

(2006 - 2) : 3  + 1 = 669 (số)

Tổng của dãy số trên là:

(2006 + 2) x 669 : 2 = 671676

e) Số số hạng có trong dãy là:

(2005 - 1) : 3 + 1 = 669

Tổng của dãy số trên là:

(2005 + 1) x 669 : 2 = 671007

g) Số số hạng có trong dãy là:

(2001 - 1) : 4 + 1 = 501

Tổng của dãy số trên là:

(2001 + 1) x 501 = 501501

15 tháng 8 2023

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

15 tháng 8 2023

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)

17 tháng 6 2018

Cái tên.. àk mà thôi -_- 

\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)

\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)

\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)

\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)

\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)

\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)

Chúc bạn học tốt ~ 

17 tháng 6 2018

Cự giải nha bn