Cho hàm số y = x 2 + x + m 2 . Tổng tất cả các giá trị thực tham số m sao cho m i n [ - 2 ; 2 ] y = 4 bằng
A. - 31 4
B. -8
C. - 23 4
D. 9 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Xét u = x 2 + x + m trên đoạn [-2;2] ta có
Ta tính được u(-2) = m + 2;
Nhận xét nên
Nếu
Nếu
Nếu
Vậy tổng các giá trị thực của tham số là
Đáp án là C
Tập xác định : D = R \{m}
Ta có : y ' = 1 − m x − m 2
Hàm số nghịch biến trên khoảng (−¥;2) khi và chỉ khi y' <0, "x < 2, tức là : 1 − m < 0 m ≥ 2 ⇔ m ≥ 2 . Vậy tập giá trị m cần tìm là [2; + ∞ )
y'= \(4x^3-4\left(m-1\right)x\)
Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)
\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)
Vậy \(m\in\) (−\(\infty\);2]
Chọn đáp án C.
Xét u = x 2 + x + m trên đoạn [-2;2] ta có u ' = 0
Do đó
Vậy tổng các giá trị thực của tham số là 9 4 - 8 = - 23 4