Số giá trị nguyên của tham số m để phương trình m − x 3 + 2 x − 3 = 2 có ba nghiệm phân biệt là
A. 0.
B. 1.
C. 2.
D. 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m^2-3\right)=4-2m\)
Để pt có 2 nghiệm pb : \(m< 2\)
Theo định lí vi - et :
\(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1.x_2=m^2-3\end{matrix}\right.\)
Mà \(x_1=3x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=m-1\\3x^2_2=m^2-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m-1}{4}\\x_2=\pm\dfrac{\sqrt{m^2-3}}{\sqrt{3}}\end{matrix}\right.\)
\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)
- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm
- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)
Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)
\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
Đáp án C
Điều kiện x ≥ 3 2
Ta có PT:
m − x 3 + 2 x − 3 = 2 ⇔ m − x 3 = 2 − 2 x − 3
⇔ m − x = 2 − 2 x − 3 3 ⇔ m = x + 2 − 2 x − 3 3
Xét hàm số: f x = x + 2 − 2 x − 3 3
⇒ f ' x = 1 + 3 2 − 2 x − 3 2 . − 1 2 x − 3 = 2 x − 3 − 3 2 − 2 x − 3 2 2 x − 3 = 2 x − 3 − 2 − 3 2 − 2 x − 3 2 + 2 2 x − 3
Đặt 2 x − 3 − 2 = t t ≥ − 2
⇒ f ' t = − 3 t 2 + t + 2 t − 2 ⇒ f ' t = 0 ⇔ t = 1 ⇒ x = 6 t = − 2 3 ⇒ x = 43 18
Ta có BBT của f(x) như sau:
Dựa vào BBT ta thấy để PT đã cho có 3 nghiệm phân biệt thì 2 , 4 < m < 5 với m nguyên ⇒ m ∈ 3 ; 4