K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Chọn D

+) Dễ thấy B ∈ Oz  . Ta có A ∈ (Oxy) và C ∈ (Oxy), suy ra OB ⊥ (OAC)

 

Từ (1) và (2) suy ra 

+) Với OH ⊥ AB suy ra H thuộc mặt phẳng (P)  với (P) là mặt phẳng đi qua O và vuông góc với đường thẳng AB. Phương trình của (P) là: y-z=0.

+) Với  OHHA => tam giác OHA vuông tại H. Do đó H thuộc mặt cầu (S) có tâm I(0;2 2 ;0) là trung điểm của OA và bán kính  R = O A 2 = 2 2

+) Do đó điểm H luôn thuộc đường tròn (T) cố định là giao tuyến của mặt phẳng (P) với mặt cầu (S).

+) Giả sử (T) có tâm K và bán kính r   thì 

 

Vậy điểm H luôn thuộc đường tròn cố định có bán kính bằng 2.

14 tháng 6 2017

Chọn đáp án C.

Gọi M(x;y;z) ta có

hệ điều kiện

10 tháng 10 2018

23 tháng 5 2022

Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.
 

DD
24 tháng 5 2022

Tọa độ điểm \(G\) là \(G\left(\dfrac{6+0+0}{3},\dfrac{0+4+0}{3},\dfrac{0+0+3}{3}\right)\) suy ra \(G\left(2,\dfrac{4}{3},1\right)\)

\(\overrightarrow{AB}=\left(-2,3,0\right),\overrightarrow{BC}=\left(0,-3,4\right),\overrightarrow{CA}=\left(2,0,-4\right)\)

Đặt \(H\left(a,b,c\right)\).

Vì \(H\) là trực tâm tam giác \(ABC\) nên 

\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{CA}=0\\\left[\overrightarrow{AB},\overrightarrow{AC}\right].\overrightarrow{AH}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3b+4c=0\\2a-4c=0\\12\left(a-2\right)+8b+6c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{72}{61}\\b=\dfrac{48}{61}\\c=\dfrac{36}{61}\end{matrix}\right.\) suy ra \(H\left(\dfrac{72}{61},\dfrac{48}{61},\dfrac{36}{61}\right)\).

\(\overrightarrow{OG}=\left(2,\dfrac{4}{3},1\right)\)

Đường thẳng qua OG: \(\left\{{}\begin{matrix}x=2t\\y=\dfrac{4}{3}t\\z=t\end{matrix}\right.\)

Bằng cách thử trực tiếp, ta thấy H nằm trên đường thẳng OG. 

 

4 tháng 10 2019

4 tháng 6 2018

Chọn B

2 tháng 6 2019

Tập hợp các điểm M là mặt cầu đường kính AB.

Tâm I là trung điểm AB nên I ( 1;-2;1 ) 

Bán kính: R = IA =  3 2

Vậy phương trình mặt cầu nói trên là

x - 1 2 + y + 2 2 + z - 1 2 = 18

Đáp án A

15 tháng 3 2019

Điểm cần tìm M(x;y;z) ta có điều kiện cách đều hai mặt phẳng là

Vậy tập hợp các điểm này nằm trên hai mặt phẳng vuông góc với nhau (hai mặt phẳng này được gọi là mặt phẳng phân giác của góc tạo bởi hai mặt phẳng).

Chọn đáp án C.

Chọn đáp án C.

12 tháng 1 2019

Chọn C

10 tháng 11 2018

17 tháng 2 2019