Tìm n sao cho ( n2 + 5n – 13 ) chia hết cho ( n + 2)
Giúp mình cách giải chi tiết nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 5n+1\(⋮\)n-2\(\Rightarrow5\left(n-2\right)+11⋮n-2\)\(\Rightarrow11⋮n-2\)\(\Rightarrow n-2\inư\left(11\right)\)
mà Ư(11)={1;11;-1;-11} thử từng trường hợp rồi tìm n ta có các giá trị n là:3;13;1;-9
a) n + 11 chia hết cho n +2
n + 11 chia hết cho n + 2
Ta luôn có n+ 2 chia hết cho n+ 2
=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)
=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)
=> 9 chia hết cho (n+ 2)
=> Ta có bảng sau:
n+ 2 | -1 | -3 | -9 | 1 | 3 | 9 |
n | -3 | -5 | -11 | -1 | 1 | 8 |
Vì n thuộc N => n \(\in\) { 1; 8}
b) 2n - 4 chia hết cho n- 1
Ta có: (n -1 ) luôn chia hết cho (n- 1)
=> 2( n-1)\(⋮\) (n-1)
=>(2n- 2) chia hêt cho (n- 1)
=> (2n-4 )- (2n-2) chia hết cho (n-1 )
=> -2 chia hết cho ( n-1)
=> Ta có bảng sau:
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Vì n thuộc N nên n thuộc {0; 2; 3}
Ta có: n-5 chia hết cho n-2
\(\Leftrightarrow\)(n-5) - (n-2) chia hết cho n-2
\(\Leftrightarrow\)3 chia hết cho n-2
\(\Leftrightarrow\)n-2 \(\in\)Ư(3)
\(\Leftrightarrow\)n-2 \(\in\){-1;1;-3;3}
Ta có bảng sau
n-2 | -1 | 1 | 3 | -3 |
n\(\in\)Z | 1 | 3 | 5 | -1 |
Vậy n\(\in\){1;3;5;-1}