Tìm x:
4x2-3xy+y2=1
6x2+5xy-11y2=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 B
câu 2 D
câu 3 ko bt
câu 4 x=-1/2; x = -(căn bậc hai(3)*i-1)/4;x = (căn bậc hai(3)*i+1)/4;
câu 5 x=-5/3, x=0, x=1
Câu 1: x2 + 2 xy + y2 bằng:
A. x2 + y2 B.(x + y)2 C. y2 – x2 D. x2 – y2
Câu 2: (4x + 2)(4x – 2) bằng:
A. 4x2 + 4 B. 4x2 – 4 C. 16x2 + 4 D. 16x2 – 4
Câu 3: 25a2 + 9b2 - 30ab bằng:
A.(5a-9b)2 B.(5a – 3b)2 C.(5a+3b)2 D.(5a)2 – (3b)2
Câu 4: 8x3 +1 bằng
A.(2x+1).(4x2-2x+1) B. (2x-1).(4x2+2x+1) C.(2x+1)3 D.(2x)3-13
Câu 5:Thực hiện phép nhân x(3x2 + 2x - 5) ta được:
A.3x3 - 2x2 – 5x B. 3x3 + 2x2 – 5x C. 3x3 - 2x2 +5x D. 3x3 + 2x2 + 5x
\(A-B-C=\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)-\left(3x^2+2xy+y^2\right)\)
\(=-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2\)
\(=-8x^2+6xy-2y^2\)
Ta có
C − A − B = − x 2 + 3 x y + 2 y 2 − 4 x 2 − 5 x y + 3 y 2 − 3 x 2 + 2 x y + y 2 = − x 2 + 3 x y + 2 y 2 − 4 x 2 + 5 x y − 3 y 2 − 3 x 2 − 2 x y − y 2 = − x 2 − 4 x 2 − 3 x 2 + ( 3 x y + 5 x y − 2 x y ) + 2 y 2 − 3 y 2 − y 2 = − 8 x 2 + 6 x y − 2 y 2
Chọn đáp án B
\(16x^2-8xy+y^2+1=\left(4x-y\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow4x=y\)
\(-4x^2+2x-1=-\left(4x^2-2\cdot2\cdot\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{15}{16}=-\left(2x-\dfrac{1}{4}\right)^2-\dfrac{15}{16}\le-\dfrac{15}{16}\)
Dấu \("="\Leftrightarrow2x=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{8}\)
\(a,P=\left(5x^2-2xy+y^2\right)-\left(x^2+y^2\right)-\left(4x^2-5xy+1\right)\\ =5x^2-2xy+y^2-x^2-y^2-4x^2+5xy-1\\ =\left(5x^2-x^2-4x^2\right)+\left(y^2-y^2\right)+\left(-2xy+5xy\right)-1\\ =3xy-1\)
\(x+y=6,2\\ \Rightarrow y=6,2-1,2=5\)
Thay \(x=1,2;y=5\)
\(\Rightarrow3.5.1,2-1=17\)
`P = 5x^2 - x^2 - 4x^2 - 2xy + 5xy + y^2 - y^2 - 1`
`= 3xy - 1`
Thay `x = 1,2; y = 6,2 - 1,2 = 5` vào
`3 xx 1,2 xx 5-1 = 18 - 1 = 17`
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)