tìm số N có ba chữ số, biết rằng khi chia số đó cho các số: 25;28;35 thì đk số dư là: 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Trường hợp 1: n=3
=>n+10=13 và n+14=17(nhận)
Trường hợp 2: n=3k+1
n+14=3k+15(loại)
Trường hợp 3: n=3k+2
n+10=3k+12(loại)
Vậy: n=3
gọi a là số cần tìm
ta có
a= 17k + 8 suy ra a+9=17k+8+9=17k+17= 17 (k+1)
a= 25l + 16 suy ra a+9= 25l + 16+9= 25l+25 = 25(l+1)
từ đó suy ra a + 9 chia hết cho 17 hoặc 25
suy ra a+9 thuộc BC (17,25)
suy ra a +9 thuộc { 0, 425, 850 , 1275, ...}
vì a có 3 chữ số nên a+9 thuộc { 425,850}
vậy a thuộc {416, 841}
Số đó cộng thêm 1 thì chia hết cho 8, cộng thêm 3 chia hết cho 31.
Số đó viết dưới dạng sau
abc+3=31n
abc+1=8m (hoặc abc+1=2*4m)
Nhìn vào vế thứ 2 ta thấy abc là một số lẻ (để khi cộng với 1 tạo nên một số chẵn mới chia hết cho 8).
abc là một số lẻ nên abc+3 phải là một số chẵn, nên n phải là một số chẵn và lớn hơn 4.
Vậy n có thể là 6,8,10,12,...
6*31=186 (không thỏa mãn)
8*31=248 (không thỏa mãn)
10*31=310 (không thỏa mãn)
12*31=372 (không thỏa mãn)
14*31=434 (thỏa mãn)
Vậy n=14 =>abc=431 (vì abc+3=31.n)
Thử lại: 431:31=13 dư 28
431:8 = 53 dư 7
Vậy số càn tìm là 431
Số cần tìm có dạng là abc. Ta có:
abc:11=a+b+c (0 < a \(\le\)9 và 0\(\le\)b,c\(\le\)9)
<=> abc=11(a+b+c)
<=> 100a+10b+c=11a+11b+11c
<=> 89a=b+10c => a=1 (b+10c<99 => a không thể >1)
=> b+10c=89 => c=8, b=9
Đáp số: Số cần tìm là: 198
Vì n chia cho các số : 25;28;35 thì đều có số dư là 20
=> n - 20 thuộc BC(25;28;35)
Vì 25 = 52 ; 28 = 7 . 22 ; 35 = 5 . 7 => BCNN(25;28;35)= 52 . 7 . 22 = 280
=> BC(25;28;35) = { 0 ; 280 ; 560 ; 840 ; ....... }
Ta có n - 20 = 280 => n = 300 ( TM )
n - 20 = 560 => n = 580 ( TM )
n - 20 = 840 => n = 860 ( TM )
Vậy n ={ 300; 580; 860 }