Chứng tỏ
(1*3*5*.........*2n)/(n+1)*(n+2)*..... 2n=1/2n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000
Đặt A = 1 - 2 + 3 - 4 +...- 96 + 97 - 98 + 99
Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (99 - 1): 1 + = 99
Vì 99 : 2 = 49 dư 1
Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99
A = 1 - 2 + 3 - 4 + ... - 96 + 97 - 98 + 99
A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99
A = - 1 + (-1) + (-1) +...+ (-1) + 99
A = -1.49 + 99
A = -49 + 99
A = 50 Thay A =
Vậy 50.\(x\) = 2000
\(x\) = 2000 : 50
\(x\) = 40
2, n và n + 1
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có: n ⋮ d; n + 1 ⋮ d
⇒ n + 1 - n ⋮ d
1 ⋮ d
d = 1
Vậy ƯCLN(n +1; n) = 1 Hay n + 1; n là hai số nguyên tố cùng nhau (đpcm)
a: Gọi d=UCLN(2n+1;2n+3)
\(\Leftrightarrow2n+3-2n-1⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>(2n+1;2n+3)=1
b: Gọi a=UCLN(2n+7;n+3)
\(\Leftrightarrow2n+7-2n-6⋮a\)
=>a=1
=>UCLN(2n+7;n+3)=1
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
AI làm được mình tic cho nha Làm ơn giúp mình :3
giai ra chua