K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Đáp án C.

Phương trình có hoành độ giao điểm của d và (C):

x 3 + 2 m x 2 + ( m + 3 ) x + 4 = x + 4 ⇔ x 2 + 2 m x + ( m + 2 ) = 0

Để d cắt (C) tại 3 điểm phân biệt A(0;4) và C thì phương trình (*) phải có hai nghiệm phân biệt x 1 , x 2  khác 0

⇔ 0 2 + 2 m . 0 + m + 2 ≢ 0 ∆ ' = m 2 - m - 2 > 0 ⇔ m + 2 ≢ 0 ( m + 1 ) ( m - 2 ) > 0 ⇔ m ≢ - 2 m > 2 m < - 1 ⇔ m > 2 m < - 1 m ≢ - 2  (1)

Giả sử B x 1 ; x 1 + 4  và B x 2 ; x 2 + 4  với x 1 , x 2  là hai nghiệm của (*)

Suy ra B C = 2 x 1 - x 2  và theo định lí Vi-ét: x 1 + x 2 = - 2 m x 1 x 2 = m + 2  

Ta có S ∆ M B C = 1 2 d ( M ; B C ) . B C = 1 2 . 1 - 3 + 4 2 . 2 x 1 - x 2 = x 1 - x 2  

Từ giả thiết ta có S ∆ M B C = 4 ⇔ x 1 - x 2 = 4 ⇔ x 1 - x 2 2 = 16  

⇔ x 1 + x 2 2 - 4 x 1 x 2 = 16 ⇔ ( - 2 m ) 2 - 4 ( m + 2 ) - 16 = 0 ⇔ 4 m 2 - 4 m - 24 = 0  

m = - 2 m = 3 . Đối chiếu với điều kiện (1), chỉ có m = 3  là thỏa mãn

23 tháng 3 2017

22 tháng 4 2018

19 tháng 12 2021

Chọn B

19 tháng 1 2022

Hỏi mãi chiếm hết cả web ko trả lời nữa 

 

20 tháng 4 2018

Đáp án C

Hoành độ các giao điểm của đường thẳng d : y = x + 4  và độ thị hàm số  y = x 3 + 2 m x 2 + ( m + 3 ) x + 4

là nghiệm của PT  x 3 + 2 m x 2 + ( m + 3 ) x + 4 = x + 4 ⇒ x [ x 2 + 2 m x + ( m + 2 ) ] = 0

Điều kiện để tồn tại ba giao điểm là ∆ ' = m 2 - m - 2 = ( m + 1 ) ( m - 2 ) > 0 m + 2 ≢ 0 ⇔ m > 2 m < - 1 ( 1 ) m ≢ - 2  

Khi đó tọa độ ba giao điểm là A(0;4) , B( A ( 0 ; 4 )   ,   B ( x 1 ; 4 + x 1 ) ) và C ( x 2 ; 4 + x 2 ) ⇒ B C → = ( x 2 - x 1 ; x 2 - x 1 )  

Ta có B C = 2 ( x 2 - x 1 ) 2 = 2 x 2 + x 1 2 - 4 x 1 x 2 = 2 2 ( m 2 - m - 2 )  

PT của đt BC là x - y + 4 = 0 ⇒ d M / B C = 1 - 3 + 4 1 2 + 1 2 = 2

 Vậy nên S M B C = 1 2 2 . 2 2 ( m 2 - m - 2 ) = 2 ( m 2 - m - 2 ) = 4 ⇔ m 2 - m - 6 = 0 ⇒ m = - 2 m = 3  

Kết hợp với điều kiện (1)  ⇒ m = 3

9 tháng 2 2021

a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .

\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)

\(\Rightarrow a=-\dfrac{1}{2}\)

b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)

\(\Leftrightarrow3x+2=2mx-x+8\)

\(\Leftrightarrow3x+2-2mx+m-8=0\)

\(\Leftrightarrow x\left(3-2m\right)=6-m\)

- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

Vậy ...

 

a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên

Thay x=6 và y=0 vào hàm số y=ax+3, ta được:

\(6a+3=0\)

\(\Leftrightarrow6a=-3\)

hay \(a=-\dfrac{1}{2}\)

Vậy: \(a=-\dfrac{1}{2}\)

b)

Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)

\(\Leftrightarrow2m\ne1\)

hay \(m\ne\dfrac{1}{2}\)(1)

Để (d) cắt (d') thì \(2m-1\ne3\)

\(\Leftrightarrow2m\ne4\)

hay \(m\ne2\)(2)

Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)

7 tháng 7 2017

Đáp án C

Số giao điểm của đường thẳng y = ( m - 1 ) x  và đồ thị hàm số y = x 3 - 3 x 2 + m + 1  là số nghiệm của PT  x 3 - 3 x 2 + m + 1 = ( m - 1 ) x ⇔ x 3 - 3 x 2 + x + 1 - m x + m = 0 ⇔ ( x - 1 ) ( x 2 - 2 x - m - 1 ) = 0  để tồn tại ba giao điểm phân biệt thì 1 - 2 - m - 1 ≢ 0 ∆ ' = 1 + m + 1 > 0 ⇔ m ≢ - 2 m > - 2   khi đó tọa độ ba giao điểm là  B ( 1 ; m - 1 ) , A ( x 1 ; y 1 ) , C ( x 2 ; y 2 )  hơn nữa  x 1 + x 2 2 = 1 y 1 + y 2 2 = ( m - 1 ) x 1 + ( m - 1 ) x 2 2 = ( m - 1 ) ( x 1 + x 2 ) 2 = m - 1

⇒ B là trung điểm AC hay ta có AB=BC 

NV
21 tháng 11 2021

a.

ĐTHS song với với đường thẳng đã cho khi:

\(\left\{{}\begin{matrix}m-2=-1\\m+3\ne3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

b.

Gọi A là giao điểm của ĐTHS và \(y=2x+4\Rightarrow y_A=2\)

\(\Rightarrow2x_A+4=2\Rightarrow x_A=-1\)

\(\Rightarrow A\left(-1;2\right)\)

Thế tọa độ A vào (1):

\(-1\left(m-2\right)+m+3=2\Leftrightarrow5=2\left(ktm\right)\)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

11 tháng 3 2018

Đáp án C

Xét pt tương giao:

2 x - 1 x - 1 = x + m   ⇔ 2 x - 1 - x + m x - 1 = 0 ⇔ x 2 - 3 - m x + m - 1 = 0

a + b 2 - 4 a b = 8 ⇔ 3 - m 2 - 4 1 - m = 8 ⇔ [ m = - 1 m = 3