Tìm x thuộc Z biết: a , - 10 ≤ x ≤ - 7 b , 5 < x < 4 c , - 2 ⩽ x ⩽ 2 d , 1 2 < x < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, -5/7+ 1+ 30/-7< x < -1/6+ 1/3 +5/6
<=> -4< x <1
<=> x = -3; -2; -1; 0
a, \(\dfrac{-5}{7}+1+\dfrac{30}{-7}\le x\le\dfrac{-1}{6}+\dfrac{1}{3}+\dfrac{5}{6}\)
<=> -4 \(\le x\le1\)
Do x \(\in Z\Rightarrow x=-4;-3;-2;-1;0;1\)
b, \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
<=> -\(\dfrac{1}{12}< x< \dfrac{1}{8}\)
Do x \(\in Z\Rightarrow x=0;1\)
@Mai Tran
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 1 :
A ) 3 < x < 5
=> x thuộc { 4 }
Vậy x = 4
Câu b và câu c cứ theo vậy mà làm .
Bài 2 :
| x + 7 | = 0
x = 0 - 7
x = -7
Vậy x = -7
a.-2 .(7 + x) < 0
ta có:- . + = - (khác 0)
- < 0
=>7 + x = -1;-2;-3;-4;...
x = -6;-5;-4;...
b.(x - 1) . (x + 2) < 0
ta có: - . + = - hoặc + . - = -
=>(x - 1) . ( x + 2) = -
=>x = -1
c.(x^2 - 9).(2x + 10) = 0
=> (x^2 - 9) = 0 hoặc (2x + 10) = 0
x^2 - 9 =0
x^2 =0 + 9
x^2 = 9
x = 3 hoặc -3
2x + 10=0
2x = 0 - 10
2x = -10
x = -10 : 2
x = -5
vậy: x thuộc {3;-3;5}
d.(x - 2)^2 - 25=0
(x - 2 )^2 = 0 + 25
(x - 2)^2 = 25
x - 2 =5
x = 5 + 2
x =7
Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x
Bài 2:
Phân tích số 12 ra là:
3 x 4 = 12
-3 x (-4) = 12
Ta thấy:
3 + 4 = 7
-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)
=> a = -3 và b = -4
Bài 2 :
a ) l x l < 3
=> l x l thuộc { 0 ; 1 ; 2 }
=> x thuộc { - 2 ; - 1 ; 0 ; 1 ; 2 }
Vậy x thuộc { - 2 ; - 1 ; 0 ; 1 ; 2 }
a) 2/5 < x < 6/5
=> x = 1 ( =5/5 ) (vì x thuộc Z)
Vậy x = 1
b) 3/5 < 3/x < 3/2
=> 5 > x > 2
=> x thuộc { 4 ; 3 } (vì x thuộc Z)
Vậy ...
c) 3/8 + -11/8 < x < 22/9 + 5/18
=> -8/8 < x < 49/18
=>-1 < x < 2+13/18
=> x thuộc {0; 1; 2} ( vì x thuộc Z )
Vậy...
1) (x^2 - 1)(x^2 - 4)(x^2 - 7)(x^2 - 10) < 0
<=> [(x^2 - 1)(x^2 - 10)][(x^2 - 4)(x^2 - 7)] < 0
<=> (x^4 - x^2 - 10x^2 + 10)(x^4 - 4x^2 - 7x^2 + 28) < 0
<=> (x^4 - 11x^2 + 10)(x^4 - 11x^2 + 28) < 0
=> x^4 - 11x^2 + 10 và x^4 - 11x^2 + 28 là 2 số trái dấu
Mà x^4 - 11x^2 + 10 < x^4 - 11x^2 + 28
Nên \(\left\{\begin{matrix}x^4-11x^2+10< 0\\x^4-11x^2+28>0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(x^2-\frac{11}{2}\right)^2-\frac{81}{4}< 0\\\left(x^2-\frac{11}{2}\right)^2-\frac{9}{4}>0\end{matrix}\right.\)\(\Leftrightarrow\frac{9}{4}< \left(x^2-\frac{11}{2}\right)^2< \frac{81}{4}\)
\(\Rightarrow\left[\begin{matrix}\frac{3}{2}< x^2-\frac{11}{2}< \frac{9}{2}\\-\frac{3}{2}>x^2-\frac{11}{2}>-\frac{9}{2}\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}7< x^2< 10\\4>x^2>1\end{matrix}\right.\)
do \(x\in Z\Rightarrow x^2\in N\)=> x2 = 9\(\Rightarrow\left[\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy x = 3; x = -3
2) A = |x - a| + |x - b| + |x - c| + |x - d|
A = |x - a| + |x - b| + |c - x| + |d - x|\(\le\)
|x - a + x - b + c - x + d - x|= |c - a + d - b|
= c - a + d - b ( vì c - a > 0; d - b > 0)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-a\ge0\\x-b\ge0\\x-c\le0\\x-d\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\)
Vậy Min A = c - a + d - b khi \(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\); a < b < c < d
\(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.;a< b< c< d}\)