- Tìm x \(\in\) z , biết : ( x - 1 ) x ( x + 7 ) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(.\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
Vậy : x=7
b) (x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...=> x = 2
Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x
Bài 2:
Phân tích số 12 ra là:
3 x 4 = 12
-3 x (-4) = 12
Ta thấy:
3 + 4 = 7
-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)
=> a = -3 và b = -4
b)
(x-7)x+1 - (x-7)x+11 = 0
=>(x-7)x+1.[1-(x-7)10]=0
=>(x-7)x+1=0 hoặc 1-(x-7)10=0
=>x-7=0 hoặc (x-7)10=1
=>x=7 hoặc x-7=1 hoặc x-7=-1
=>x=7 hoặc x=8 hoặc x=6
a)
(x-1)x+2=(x-1)x+6
(x-1)x+2-(x-1)x+6=0
(x-1)x+2 . [1-(x-1)4]=0
=> (x-1)x+2=0 hoặc 1-(x-1)4=0
=>x-1=0 =>(x-1)4=1
=>x=1 =>x-1=1 hoặc x-1=-1
=> x=2 hoặc x=0
vậy x \(\in\) {0;1;2}
<=> (x-7)^x+11 - (x-7)^x+1 = 0 ( chuyển vế cho thành đẳng thức rồi chuyển lại) <=> (x-7)^x+1 [(x-7)^x+10 -1 ] = 0 <=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left[\left(x-7\right)^{x+10}-1\right]=0\end{cases}\Rightarrow\orbr{\orbr{\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{x+10}=1\end{cases}}}}}\) => x=7
xét x+10 lẻ => x-7=1 => x=8
tương tự với x+10 chẳn
\(\left(x-1\right)\left(x+7\right)=0\)=> x-1=0=>x=1
hoặc x+7=0=>x=-7