cho tam giác ABC vuông cân tại A.Tia phan giác góc B cắt AC ở D;tia phân giác góc cắt AB ở E.Gọi I là giao điểm Của BD;CE.Đường thẳng song song với AI kẻ từ E cắt Bd tại M.Đường thẳng sog song với CE kẻ từ D cắt CE tại N
a) tính BIC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: ΔBAD=ΔBED
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
=>ΔBFC cân tại B
ABCDIE12
1) Xét hai tam giác ABI và EBI có:
AB = EB (gt)
B1ˆ=B2ˆ(gt)B1^=B2^(gt)
BI: cạnh chung
Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)
Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)
Mà BAIˆ=90oBAI^=90o
Do đó: BEIˆ=90oBEI^=90o
2) Xét hai tam giác vuông AID và EIC có:
IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)
AIDˆ=EICˆAID^=EIC^ (đối đỉnh)
Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)
Suy ra: ID = IC (hai cạnh tương ứng)
Do đó: ΔIDCΔIDC cân tại I
3) Ta có: AB = EB (gt)
⇒ΔABE⇒ΔABE cân tại B
⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE
hay BI ⊥⊥ AE (1)
Ta lại có: AB = EB (gt)
AD = EC (ΔAID=ΔEICΔAID=ΔEIC)
=> BD = BC
=> ΔBDCΔBDC cân tại B
=> BI là đường phân giác đồng thời là đường cao của tam giác
hay BI ⊥⊥ DC (2)
Từ (1) và (2) suy ra: AE // DC (đpcm)
a: Xet ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM
Xét ΔBME vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
b: Xét ΔDAE vuông tại A và ΔDMC vuông tại M co
DA=DM
góc ADE=góc MDC
=>ΔDAE=ΔDMC
=>DE=DC
=>D nằm trên trung trực của EC
mà BK là trung trực của EC
nên B,D,K thẳng hàng
a/ Xét △ABD và △HBD:
góc(ABD)=góc(HBD) (BD là phân giác góc B)
BD:chung
góc(BAD)=góc(BHD)(=90o)
=> △ABD=△HBD (cạnh huyền-góc nhọn)
b/ △ABD=△HBD
=> BA=BH (2 cạnh tương ứng)
Xét △BAH:
BA=BH(cmt)
=> △BAH cân tại B mà BD là phân giác góc B
=> BD là đường cao AH
=> BD⊥AH
mình làm được 2 câu thôi, xin lỗi nhé :), hình bạn tự vẽ nhá
câu a
tam giác dba à tam giác dbn có
góc dab = góc dnb = 90 độ
góc abd = góc dbn
chung bd
=> tam giác dba = tam giác dbn (cạnh huyền góc nhọn)
câu b
từ câu a
=> góc adb = góc bdn (góc tương ứng)
có góc mda = góc ndc (đối đỉnh)
=> góc mdb = góc cdb
tam giác mdb và tam giác cdb có
chung bd
góc mbd = góc cbd
gócd mdb = góc cdb
=> tam giác mdb = tam giác cdb (gcg)
=> bm = bc (cạnh tương ứng)
=> tam giác bmc cân tại b (dhnb)
mình ko biết làm câu c, hì hì, xin lỗi nhé :)
chúc may mắn
xét tam giác ABD và tam giác ACE có:
góc A là góc chung
AB = AC ( tam giác cân tại A)
AD = AE(gt)
suy ra: tam giác ABD= tam giác ACE ( c-g-c)
vậy BD = CE ( 2 góc tương ứng)
A B C D E 1 2 1 2
Xét 2 tâm giác BEC và tam giác CDB có
BC ( chung )
\(\widehat{ABC}=\widehat{ACB}\) ( theo giả thiết )
\(\widehat{B_2}=\widehat{C_1}\)( hai góc phân giác của 2 góc bằng nhau )
\(\Delta BEC=\Delta CDB\)(g.c.g )
\(\Rightarrow BD=EC\)