Giải thích tại sao các phân số sau đây bằng nhau:
a) a b = − a − b
b) a b a b ¯ c d c d ¯ = a b a b a b ¯ c d c d c d ¯
c) a b a b ¯ a b a b a b ¯ = 101 10101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) − 28 21 = − 28 : 7 21 : 7 = − 4 3 = ( − 4 ) . ( − 13 ) 3. ( − 13 ) = 52 − 39
b ) − 4040 6060 = ( − 4040 ) : 2020 6060 : 2020 = − 2 3
c ) 120120 240240 = 120120 : 120120 240240 : 120120 = 1 2
d ) 18180 − 27270 = 18180 : 9090 − 27270 : 9090 = 2 − 3
a) − 27 270 = ( − 27 ) : ( − 27 ) 270 : ( − 27 ) = 1 − 10
b ) − 1212 2323 = ( − 1212 ) : ( − 101 ) 2323 : ( − 101 ) = 12 − 23
c ) − 141414 − 333333 = ( − 141414 ) : ( − 10101 ) ( − 333333 ) : ( − 10101 ) = 14 33
d ) 2525 − 3030 = 2525 : ( − 505 ) ( − 3030 ) : ( − 505 ) = − 5 6
a ) x y 2 y z = x y 2 : y y z : y = x y z b ) a 00 a ¯ b 00 b ¯ = a 00 a ¯ : 1001 b 00 b ¯ : 1001 = a b
c ) a b 00 ab ¯ c d 00 c d ¯ = a b 00 ab ¯ : 10001 c d 00 c d ¯ : 10001 = a b ¯ c d ¯
d ) x y z − y z t y 2 z 2 − y z = y z ( x − 1 ) : ( − y z ) y z ( y z − 1 ) : ( − y z ) = t − x 1 − y z
\(\frac{a}{b}\)= \(\frac{3}{d}\)
\(\Rightarrow\)\(-\frac{a}{b}\)= \(-\frac{c}{d}\)
\(\Rightarrow\)1 + \(-\frac{a}{b}\)= 1 + \(-\frac{c}{d}\)
\(\Rightarrow\)\(\frac{b-a}{b}\)= \(\frac{d-c}{d}\)( dpcm)
a/b = c/d => 1 - a/b = 1 - c/d
=> b/b - a/b = d/d - c/d
=> (b - a)/b = (d - c)/d
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{-a}{b}=\frac{-c}{d}\)
\(\Rightarrow1+\frac{-a}{b}=1+\frac{-c}{d}\)
\(\Rightarrow\frac{b-a}{b}=\frac{d-c}{d}\left(dpcm\right)\)
\(a,\dfrac{a}{b}=\dfrac{ad}{bd}\) và \(\dfrac{c}{d}=\dfrac{bc}{bd}\). Do \(\dfrac{a}{b}< \dfrac{c}{d}\) nên \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\).
Suy ra \(ad< bc\)
\(b,\dfrac{a}{b}< \dfrac{c}{d}\) suy ra \(ad< bc\). Do đó \(ab+ad< ab+bc\) nên \(a\left(b+d\right)< b\left(a+c\right)\)
Vậy \(\dfrac{a}{b}< \dfrac{a+c}{b+d}.\) Từ \(ad< bc\) ta cũng có \(ad+cd< bc+cd\) nên \(\left(a+c\right)d< \left(b+d\right)c\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\)
a) 54 270 = 54 : 54 270 : 54 = 1 5 ;
b) − 1111 2222 = − 1111 : 1111 2222 : 1111 = − 1 2 .
a) − 21 28 = − 21 : 7 28 : 7 = − 3 4 = − 3.13 4.13 = − 39 52
b) − 1313 1717 = − 1313 : 101 1717 : 101 = − 13 17 = − 13.10101 17.10101 = − 131313 171717
a) a b = a . ( − 1 ) b . ( − 1 ) = − a − b
b) ta có:
a b a b ¯ c d c d ¯ = a b a b ¯ : 101 c d c d ¯ : 101 = a b ¯ c d ¯ ; a b a b a b ¯ c d c d ¯ c d = a b a b a b ¯ : 10101 c d c d ¯ c d:10101 = a b ¯ c d ¯
do đó: a b a b ¯ c d c d ¯ = a b a b a b ¯ c d c d ¯ c d
c) a b a b ¯ a b a b a b ¯ = a b a b ¯ : a b ¯ a b a b a b ¯ : a b ¯ = 101 10101