K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

làm câu

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

NM
4 tháng 3 2022

ta có A thuộc Z nên 

\(2A=\frac{6n-2}{2n-1}=\frac{3\left(2n-1\right)+1}{2n-1}=3+\frac{1}{2n-1}\) nguyên khi 2n-1 là ước của 1 

hay ta có : \(\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\text{ hay }\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

4 tháng 3 2022

\(A=\dfrac{6n-2}{2n-1}=\dfrac{3\left(2n-1\right)+1}{2n-1}=3+\dfrac{1}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n-11-1
n1loại

 

5 tháng 4 2021

đễ quá 

7 tháng 8 2017

a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)

b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Tới đây lập bảng tìm n.