K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

\(a,ĐK:x>0;x\ne1\\ b,B=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\\ c,B=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\in Z\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{2;3\right\}\left(x>0\right)\Leftrightarrow x\in\left\{4;9\right\}\left(tm\right)\)

23 tháng 12 2021

mk cảm ơn nhìuuuu nha

1 tháng 8 2020

Ta có: 

\(x^4+x^3-x^2+ax+b=\left(x^2+x-2\right)\left(x^2+cx+d\right)\)

\(=x^4+cx^3+dx^2+x^3+cx^2+dx-2x^2-2cx-2d\)

\(=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)

\(\Rightarrow\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a\end{cases}}\)và \(-2d=b\)

\(\Rightarrow\hept{\begin{cases}c=0\\d=1\\a=1\end{cases}}\)và \(b=-2\)

Vậy \(a=1\)\(b=-2\)\(c=0\)\(d=1\) 

1 tháng 8 2020

Bài làm:

Ta có: \(x^4+x^3-x^2+ax+b=\left(x^2+x-2\right)\left(x^2+cx+d\right)\)

\(\Leftrightarrow x^4+x^3-x^2+ax+b=x^4+cx^3+dx^2+x^3+cx^2+dx-2x^2-2cx-2d\)

\(\Leftrightarrow x^4+x^3-x^2+ax+b=x^4+\left(c+1\right)x^3+\left(c+d-2\right)x^2+\left(d-2c\right)x-2d\)

Áp dụng phương pháp đồng nhất hệ số ta được:

c + 1 = 1 và c + d - 2 = -1 và d - 2c = a và -2d = b (Do viết PT bị lỗi nên mk viết kiểu này nhé)

=> c = 0 và d = 1 và a = 1 và b = -2

Vậy ta tìm được bộ số (a;b;c;d) thỏa mãn: (1;-2;0;1)

Nếu nhầm lẫn chỗ nào thì thông cảm cho mk nha

16 tháng 11 2021

ĐKXĐ: \(x\ge0,x\ne4\)

a) \(B=\dfrac{2\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)

b) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{2\sqrt{x}+2-2\sqrt{x}-4}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\left(\sqrt{x}-2\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp ĐKXĐ:

\(\Rightarrow x\in\left\{0;1;9;16\right\}\)

27 tháng 1 2016

Viết đề kiểu thế thánh hiểu được à