Cho:
A=1+1\2+1\3+.....+1\63
CMR: 3<A<6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(1+a+a^2+....+a^{63}\)
\(=\left(1+a\right)+a^2\left(1+a\right)+....+a^{62}\left(1+a\right)\)
\(=\left(1+a\right)\left(1+a^2+a^4+....+a^{62}\right)\)
\(=\left(1+a\right)\left[\left(1+a^2\right)+a^4\left(1+a^2\right)+.....+a^{60}\left(1+a^2\right)\right]\)
\(=\left(1+a\right)\left(1+a^2\right)\left(1+a^4+....+a^{60}\right)\)
.....
\(=\left(1+a\right)\left(1+a^2\right).....\left(1+a^{32}\right)\)
Có \(\left(1+a\right)\left(1+a^2\right)...\left(1+a^{32}\right)=\frac{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)
\(=\frac{\left(a^2-1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)
\(...\)
\(=\frac{\left(a^{32}-1\right)\left(a^{32}+1\right)}{a-1}\)
\(=\frac{a^{64}-1}{a-1}\)
\(=\frac{\left(a-1\right)\left(a^{63}+a^{62}+...+a^2+a+1\right)}{a-1}\)
\(=a^{63}+a^{62}+...+a^2+a+1\)
Vậy ...
ta có (a-1)(1+a+a2+......+a63)=a64-1
(a-1)(a+1)(a2+1)....(a32+1)=a64-1