hãy chứng minh rằng, nếu:
a/b<c/d(b>0,d>0) thì : a/b<a+c/b+d<c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=>(a+b)(c-d)=(a-b)(c+d)
=>ac-ad+bc-bd=ac+ad-bc-bd
=>-ad+bc=ad-bc
=>-2ad=-2bc
=>ad=bc
=>a/b=c/d
Từ đầu bài ta có :`a/b<c/d` hay `ad<bc`
`+,ad<bc`
`=> ad+ab<bc+ab`
`=>a(b+d)<b(c+a)`
hay `a/b<(c+a)/(b+d)(1)`
`+,ad<bc`
`=>ad+cd<bc+cd`
`=>d(a+c)<c(b+d)`
hay `c/d>(a+c)/(b+d)(2)`
Từ `(1)` và `(2)=>a/b<(a+c)/(b+d)<c/d`
Áp dụng kết quả bài 5, ta có: ⇒ ad < bc (1)
Cộng cả hai vế của (1) với ab ta có: ab + ad < ab + bc
hay a(b + d) < b.(a + c)
Cộng cả hai vế của (1) với cd ta có: ad + cd < bc + cd
Hay d(a + c) < c(b + d)
Vậy
Ta có: a b < c d ⇒ a d < b c n ê n
a b + a d < a b + b c ⇔ a ( b + d ) < b ( a + c ) ⇔ a b < a + c b + d
Mặt khác:
a d + c d < b c + d c ⇔ d ( a + c ) < c ( b + d ) ⇔ a + c b + d < c d
Từ (1) và (2): a b < a + c b + d < c d
Ta có : \(\frac{a}{b}0\) \(\left(1\right)\)
vì \(ad\)\(
Ta có:a/b<c/d =>ad<bc (1)
Thêm ab vào (1) ta đc:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (1), ta lại có:
ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d