cho hình trong đó AE vuông BC . tính AB biết AE =4cm,AC=5cm , Bc=9cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý pitago vào tam giác vuông AEC ta có:
AC2=AE2+EC2
=>EC2=AC2-AE2=52-42=25-16=9
=>EC=3M
Ta có: BC = BE + EC
BE = BC – EC = 9 – 3 = 6(m)
Áp dụng định lí pitago vào tam giác vuông AEB, ta có:
AB2=AE2+EB2=42+62=16+36=52
Suy ra: AB = √52(m) ≈7,2m
Hình vẽ:
A B C H 5cm 9cm 4cm
Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\)có:
\(AC^2=AH^2+HC^2\)( định lý py-ta-go )
\(\Rightarrow5^2=4^2+HC^2\)
\(\Rightarrow HC^2=5^2-4^2\)
\(\Rightarrow HC^2=25-16\)
\(\Rightarrow HC^2=9\)
\(\Rightarrow HC=\sqrt{9}\)
\(\Rightarrow HC=3cm\)
Ta có: \(BH+HC=9cm\)
mà \(HC=3cm\left(cmt\right)\)
\(\Rightarrow BH=9-3=6cm\)
Xét \(\Delta AHB\left(\widehat{H}=90^0\right)\)có:
\(AB^2=AH^2+BH^2\)( định lý py-ta-go )
\(\Rightarrow AB^2=4^2+6^2\)
\(\Rightarrow AB^2=16+36\)
\(\Rightarrow AB^2=52\)
\(\Rightarrow AB=\sqrt{52}cm\)
Vậy độ dài cạnh AB là \(\sqrt{52}cm\)
a) Xét tam giác ABC có AD là phân giác
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{4+6}=\dfrac{5}{10}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{1}{2}.AB=\dfrac{1}{2}.4=2\left(cm\right)\\DC=\dfrac{1}{2}.AC=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: DE//AC \(\Rightarrow\widehat{ADE}=\widehat{DAC}\)(so le trong)
Mà \(\widehat{DAC}=\widehat{BAD}\)(AD là phân giác)
\(\Rightarrow\widehat{ADE}=\widehat{BAD}\) => Tam giác ADE cân tại E => AE=DE
c) Xét tam giác ABC có:
DE//AC \(\Rightarrow\dfrac{DE}{AC}=\dfrac{BD}{BC}\Rightarrow DE=\dfrac{BD.AC}{BC}=\dfrac{2.6}{5}=2,4\left(cm\right)\)
Mà AE=DE \(\Rightarrow AE=DE=2,4cm\)