K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

A = ( n - 4 ) ( n - 15 )
Do 4 và 15 không cùng là số chẵn mà cũng không cùng số lẻ nên n bằng bao nhiêu thì kết quả của n - 4 và n - 15 vẫn như vậy.
Mà chẵn * lẻ hay lẻ * chẵn đều bằng chẵn nên A là số chẵn.

27 tháng 1 2016

A = ( n - 4 ) ( n - 15 )
Do 4 và 15 không cùng là số chẵn mà cũng không cùng số lẻ nên n bằng bao nhiêu thì kết quả của n - 4 và n - 15 vẫn như vậy.
Mà chẵn * lẻ hay lẻ * chẵn đều bằng chẵn nên A là số chẵn.
B = n2 - n - 1 = n ( n - 1 ) - 1
Do n và n - 1 là 2 số tự nhiên liền tiếp ( 1 số chẵn, 1 số lẻ ) nên kết quả của n2 - n là số chẵn. Nhưng 1 là số lẻ mà chẵn - lẻ = lẻ nên B là số lẻ.

24 tháng 1 2016

Lớp mấy

24 tháng 1 2016

khó

29 tháng 1 2018

a/ \(\left(n-4\right)\left(n-15\right)\)

Do \(n\in Z\Leftrightarrow n-4;n-15\in Z\)

Vì 2 thừa số trên đều mang t.c chẵn lẻ

=> Tích của chúng là số chẵn

b/ \(n^2-n-1\)

\(\Leftrightarrow n\left(n-1\right)-1\)

Mà \(n;n-1\) là 2 số nguyên liên tiếp

=> sẽ có 1 chẵn,  1 lẻ

=> n (n - 1) là chẵn

=> n(n - 1) - 1 là lẻ

26 tháng 7 2015

Nếu n=2k(k thuộc Z)

thì A=(2k-4)(2k-15)=số chẵn* số lẻ= số chẵn

Thì B=(2k)2-2k-1=số chẵn - số chẵn - số lẻ = số lẻ

Nếu n=2k+1(k thuộc Z)

thì A=(2k+1-4)*(2k+1-15)=(2k-3)*(2k-14)=số lẻ * số chẵn = số chẵn

thì B=(2k+1)(2k+1)-2k-1-1=số lẻ* số lẻ- số chẵn=số lẻ - số chẵn=số lẻ

21 tháng 8 2016

Nếu n = 2k (k thuộc Z) thì:

A = (2k-4) (2k-15) = chẵn * lẻ = chẵn

B = (2k)- 2k - 1 = chẵn - chẵn - lẻ = lẻ

Nếu n = 2k+1 (k thuộc Z) thì:

A = (2k+1-4) (2k+1-15) = (2k-3) (2k-14) = lẻ * chẵn = chẵn

B = (2k+1) (2k+1) - 2k - 1 - 1 = lẻ * lẻ - chẵn = lẽ - chẵn = lẻ

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

a. Nếu $n$ chẵn thì $n-4$ chẵn

$\Rightarrow (n-4)(5n+13)$ chẵn 

Nếu $n$ lẻ thì $5n$ lẻ. Mà 13 lẻ nên $5n+13$ chẵn.

$\Rightarrow (n-4)(5n+13)$ chẵn.

Vậy $(n-4)(5n+13)$ chẵn với mọi $n\in\mathbb{Z}$

b.

Ta thấy $n^2-n=n(n-1)$ chẵn với mọi $n\in\mathbb{Z}$ do $n(n-1)$ là tích 2 số nguyên liên tiếp.

$\Rightarrow n^2-n+3=n(n-1)+3$ lẻ với mọi $n\in\mathbb{Z}$