K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

Chọn C

Hàm số y =  x e x + 1 liên tục trên [-2;0]

Ta có y' = 0 

Có  và y(0) = 0.

Vậy 

23 tháng 6 2019

Ta có: y’= 1-e-x

Và y’= 0 khi 1-e-x = 0 nên   x=0 .

Hàm số đã cho liên tục và xác định trên đoạn [-1 ;1]

Ta có: y(-1) = -1+e ; y(0) = 1 ; y(1) = 1+ e-1  .

Do đó  

Vậy T=  1+ e - 1= e

Chọn B

 

29 tháng 3 2019

Đáp án D.

Phương pháp: 

Phương pháp tìm GTLN, GTNN của hàm số y = f x  trên a ; b .  

+) Giải phương trình f ' x = 0 ⇒  các nghiệm x 1 ∈ a ; b .  

+) Tính các giá trị

f a ;   f b ;   f x i .  

+) So sánh và kết luận:

m a x a ; b y = m a x f a ; f b ; f x i ;   min a ; b y = min f a ; f b ; f x i  

Cách giải:

ĐKXĐ: x > 0.  

y = x − 3 ln x ⇒ y ' = 1 − 3 x = 0 ⇔ x = 3 ∉ 1 ; e  

y 1 = 1 ;   y e = e − 3 ⇒ min 1 ; e = e − 3

 

16 tháng 8 2017

Đáp án A

Ta có:  y ' = 1 − 1 x = 0 ⇔ x − 1 x = 0 ⇔ x = 1  . Ta có  y 1 2 = 1 2 + ln 2 ;   y 1 = 1 ;   y e = e − 1

⇒ M a x y = e − 1 ;   M i n y = 1

28 tháng 2 2018

1 tháng 10 2019

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và các điểm không xác định của y’ trên đoạn 1 2 ; e

 Tính các giá trị tại  1 2 ,   e  và các điểm vừa tìm được

- Kết luận GTLN, GTNN của hàm số từ các giá trị trên.

Cách giải:

TXĐ: D = (0;+∞)

⇒ Giá trị nhỏ nhất, giá trị lớn nhất của hàm số lần lượt là: 1 và e - 1

1 tháng 7 2018

1 tháng 9 2018

26 tháng 4 2019

Đáp án A

Ta có: y ' = 1 − 1 x = x − 1 x ⇒ y ' = 0 ⇒ x = 1  

Ta tính các giá trị của hàm số tại điểm cực trị và các điểm biên

f 1 2 = 1 2 + ln 2 ≈ 1 , 15 f 1 = 1 f e = e − 1 ≈ 1 , 72

So sánh các giá trị ta kết luận hàm số đạt GTNN và GTLN trên 1 2 ; e  

Lần lượt là 1 và e − 1 .

9 tháng 9 2018

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0