Trong không gian Oxyz, gọi (P) là mặt phẳng đi qua điểm M(1;4;9), cắt các tia Ox, Oy, Oz tại A, B, C sao cho biểu thức OA+OB+OC đạt giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây?
A. N(12;0;0).
B. N(6;0;0).
C. N(0;0;12).
D. N(0;6;0).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Mặt phẳng (Oxy) có phương trình là: z = 0.
Mặt phẳng này có vecto pháp tuyến là: k → = (0; 0; 1)
Vì mặt phẳng (P) song song với mặt phẳng (Oxy)
nên mặt phẳng này nhận vecto n p → = k → = (0; 0; 1) làm vecto pháp tuyến.
Mặt khác (P) đi qua điểm M(1;-2;3) nên (P) có phương trình là:
1.(z - 3) = 0 ⇔ z - 3 = 0
Ta có mặt phẳng (P) có VTPT
Suy ra
Mặt phẳng α đi qua P(2;0;-1) và nhận làm một VTPT nên có phương trình α : -7x + 11y + z + 15 = 0
Chọn C.
Chọn đáp án D.