Cho lăng trụ đứng A B C . A ' B ' C ' có đáy là các tam giác đều cạnh 1, A A ' = 3 . Tính khoảng cách d từ điểm A đến mặt phẳng A ' B C .
A. 15 a 3
B. 5 a 3
C. 15 a 5
D. 5 a 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi M là trung điểm của BC và H là hình chiếu vuông góc của A trên đường thẳng A’M
Khi đó
Chọn D
Gọi M là trung điểm của BC và H là hình chiếu của A trên A'M.
Ta có :
(do tính chất trọng tâm).
Xét tam giác vuông A'AM :
Suy ra thể tích lăng trụ ABC. A'B'C' là:
Chọn D
Diện tích đáy là B = S ∆ A B C = a 2 3 4 .
Chiều cao là h = d((ABC); (A'B'C')) = AA'
Do tam giác ABC là tam giác đều nên O là trọng tâm của tam giác ABC. Gọi I là trung điểm của BC, H là hình chiếu vuông góc của A lên A'I ta có:
Xét tam giác A'AI vuông tại A ta có:
Đáp án D
Gọi I là trung điểm của cạnh BC, đặt AA’=x
Ta có
d ( O , ( A ' B C ) ) d ( A , ( A ' B C ) ) = O I A I = 1 3 ⇒ d ( A , ( A ' B C ) ) = a 2
Có V A ' A B C = 1 3 x . a 2 3 4 = 1 3 . a 2 . S A ' B C
Mà S A ' B C = 1 2 A ' I . B C = 1 2 x 2 + 3 a 2 4
⇒ x 3 = x 2 + 3 a 2 4 ⇔ 2 x 2 = 3 a 2 4 ⇒ x = a 3 2 2
⇒ V L T = a 3 2 2 . a 2 3 4 = 3 2 a 3 16
không biết vẽ hình hơ
nhưng biết cách làm
xét tam giác AA'B' vuông tại A
AA'= căn ( (a căn 3)2 - a2)=a*(3a2+1)
vậy V = a*(3a2 +1) * (1/2 )*( (căn 3 *a)/2) *a ( chiều cao * diện tích tam gaic1 abc )
b) thua
Đáp án C
Gọi I là trung điểm của BC, trong mặt phẳng (A′AI) kẻ AH vuông góc với A′I.
B C ⊥ A I B C ⊥ A A ' ⇒ B C ⊥ A H . A H ⊥ B C c m t A H ⊥ A ' I ⇒ A H ⊥ A ' B C .
Vậy d A , A ' B C = A H .
Ta có
1 A H 2 = 1 A A ' 2 + 1 A I 2 = 1 3 a 2 + 1 3 a 2 2 = 1 3 a 2 + 4 3 a 2 = 5 3 a 2 ⇒ A H = 15 a 5 .