Hãy so sánh
a) 5 3 và 3 5
b) 2 8 và 3 5
c) 4 3 và 8 2 .
d) 25 45 và 125 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(b,8^5=32768\)
\(6^6=46656\)
Vì \(32768< 46656\) nên \(8^5< 6^6\)
\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)
#Ayumu
1:
a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)
b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)
nên 2 p/s ko bằng nhau
a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)
b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)
c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)
d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)
2) \(-x^2+4x-2\)
\(=-\left(x^2-4x+2\right)\)
\(=-\left(x^2-4x+4-2\right)\)
\(=-\left(x-2\right)^2+2\)
Ta có: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+2\le2\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow-\left(x-2\right)^2+2=2\Leftrightarrow x=2\)
Vậy: GTLN của bt là 2 tại x=2
b) \(\sqrt{2x^2-3}\) (ĐK: \(x\ge\sqrt{\dfrac{3}{2}}\))
Mà: \(\sqrt{2x^2-3}\ge0\forall x\)
Dấu "=" xảy ra:
\(\sqrt{2x^2-3}=0\Leftrightarrow x=\sqrt{\dfrac{3}{2}}=\dfrac{3\sqrt{2}}{2}\)
Vậy GTNN của bt là 0 tại \(x=\dfrac{3\sqrt{2}}{2}\)
...
1:
b: \(4\sqrt{5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{75}\)
=>\(4\sqrt{5}>5\sqrt{3}\)
=>\(\sqrt{4\sqrt{5}}>\sqrt{5\sqrt{3}}\)
c: \(3-2\sqrt{5}-1+\sqrt{5}=2-\sqrt{5}< 0\)
=>\(3-2\sqrt{5}< 1-\sqrt{5}\)
d: \(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)
\(\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)
=>\(\dfrac{1}{\sqrt{2006}+\sqrt{2005}}< \dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)
=>\(\sqrt{2006}-\sqrt{2005}< \sqrt{2005}-\sqrt{2004}\)
e: \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=4008+2\cdot\sqrt{2003\cdot2005}=4008+2\cdot\sqrt{2004^2-1}\)
\(\left(2\sqrt{2004}\right)^2=4\cdot2004=4008+2\cdot\sqrt{2004^2}\)
=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2< \left(2\sqrt{2004}\right)^2\)
=>\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)
1: 243^5=(3^5)^5=3^25
3*27^8=3*(3^3)^8=3^25
=>243^5=3*27^8
6: 125^5=(5^3)^5=5^15
25^7=(5^2)^7=5^14
=>125^5>25^7(15>14)
5: 78^12-78^11=78^11(78-1)=78^11*77
78^11-78^10=78^10*77
mà 11>10
nên 78^12-78^11>78^11-78^10
Bài 1:
a: -8/12<0<-3/-4
b: -56/24<0<7/3
c: 4/25<1<15/13
=>-4/25>-15/13
Bài 2:
a: =-60/45=-4/3
b: =4/15-3/2-8/5=8/30-45/30-48/30=-85/30=-17/6
a)53>35
b)28<35
c)43<82
d)2545<12530