Gọi T là tập hợp tất cả giá trị của tham số m để hàm số y = m x + 1 x + m 2 có giá trị lớn nhất trên đoạn [2;3] bằng 5 6 . Tính tổng của các phần tử trong T.
A. 17 5
B. 16 5
C. 2
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số bậc nhất trên bậc nhất luôn đồng biến hoặc nghịch biến trên từng khoảng xác định của nó.
Chọn D
Xét hàm số y = x 2 - m x + 2 m x - 2 trên [-1;1] có:
Bảng biến thiên
Trường hợp 1. Khi đó
Trường hợp 2.
Khả năng 1.
Khi đó
Khả năng 2 Khi đó
Trường hợp này vô nghiệm.
Khả năng 3. Khi đó Vô nghiệm.
Vậy có hai giá trị thỏa mãn là Do đó tổng tất cả các phần tử của S là -1.
+ Xét hàm số f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .
Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận ) hoặc x= -1( loại)
+ Suy ra GTLN và GTNN của f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.
+ Xét hàm số y = x 3 - 3 x + m trên đoạn [0; 2 ] ta được giá trị lớn nhất của y là
m a x m ; m - 2 ; m + 1 = 3 .
TH1: m= 3 thì max {1;3;5}= 5 ( loại )
TH2:
+ Với m= -1. Ta có max {1; 3}= 3 (nhận).
+Với m= 5. Ta có max { 3;5;7}= 7 (loại).
TH3:
+ Với m= 1. Ta có max {1; 3}= 3 (nhận).
+ Với m= -5. Ta có max {3;5;7}= 7 (loại).
Do đó m= -1 hoặc m= 1
Vậy tập hợp S có phần tử.
Chọn B.
Chọn A
Ta có y = m x + 1 x + m 2
Điều kiện
- Nếu m = 1 thì Khi đó không thỏa mãn.
- Nếu thì y' > 0. Suy ra hàm số y = m x + 1 x + m 2 đồng biến trên đoạn [2;3].
Khi đó
Đối chiếu với điều kiện m < 1, ta có m = 2 5 thỏa mãn yêu cầu bài toán.
Vậy
Do đó tổng các phần tử của T là