Tìm giá trị nguyên của n để 6n-3 chia hết cho 1-3n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6n-5 chia hết cho 3n-1
mà 6n-5=3(3n-1)-8
vậy 3n-1 thuộc Ư(8)=(-1;1;-2;2;-4;4;-8;8)
3n-1 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 |
n | 0 | L | L | 1 | -1 | L | L | 3 |
vậy n thuộc (0;1;-1;3)
k cho mik zới
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
A = (3n^3 + 10n^2 - 5)/(3n + 1)
A = (3n^3 + n^2 + 9n^2 + 3n - 3n - 1 -4)/(3n+1)
A= n^2 + 3n - 1 - 4/(3n+1)
biểu thức 3n^3 + 10n^2 - 5 chia hết cho giá trị của biểu thức 3n + 1 khi:
3n+1 = ±1,±2, ±4
=> n = 0,-2/3,1/3,-1,1,-5/3
chọn giá trị nguyên: n = 0,-1,1
CHÚC BẠN HỌC TỐT
\(A=\frac{\left(3n^3+10n^2-5\right)}{\left(3n+1\right)}\)
\(A=\frac{\left(3n^3+n^2+9n^2+3n-3n-1-4\right)}{\left(3n+1\right)}\)
\(A=\frac{n^2+3n-1-4}{\left(3n+1\right)}\)
Biểu thức \(3n^3+10n^2-5\)chia hết cho giá trị của biểu thức \(3n+1\) khi:
3n+1 = ±1,±2, ±4
\(\Rightarrow n=0;-\frac{2}{3};-\frac{1}{3};-1;-\frac{5}{3}\)
Chọn giá trị nguyên:\(n=0;-1;1\)
a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)
Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4
b) Cho n-1=0 => n=1
Sau đó thay vào biểu thức 10n2+n -10 sẽ tìm ra n=1
Cho mình nha!!! <3
Ta có :
\(A=\frac{\left(6n-3\right)}{\left(3n+1\right)}=\frac{2\left(3n+1\right)-5}{\left(3n+1\right)}=2-\frac{5}{\left(3n+1\right)}.\)
Để \(A\)là số nguyên thì \(\frac{5}{\left(3n+1\right)}\)nguyên hay \(5⋮3n+1\)
Do đó \(\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
Lại có \(3n+1⋮3\)dư 1 nên \(\left(3n+1\right)\in\left\{1;-5\right\}\)hay \(n\in\left\{0;2\right\}\)
Vậy các số nguyên n thỏa mãn \(A\)có giá trị nguyên khi \(n=0\)hoặc \(n=2\)
=(6n-1) chia hết cho (3n+2)
Mà (6n+4) chia hết cho(3n+2)
=(6n+4-6n+1) chia hết cho (3n+2)=5 chia hết cho(3n+2)
Lập bảng đề suy ra n{-1,1}
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Lấy 3n^3 + 10n^2 - 5 : 3n + 1 như bình thường, cuối cùng được dư bao nhiêu thì số đó phải chia hết cho 3n + 1. Thì 3n + 1 phải thuộc tập hợp ước của số đó. Và cứ thế tìm n thôi.
Lời giải:
$6n-3\vdots 1-3n$
$\Rightarrow -1-2(1-3n)\vdots 1-3n$
$\Rightarrow -1\vdots 1-3n$
$\Rightarrow 1-3n\in \left\{1; -1\right\}$
$\Rightarrow n\in \left\{0; \frac{2}{3}\right\}$
Vì $n$ nguyên nên $n=0$