cho hàm số \(y=\left(m-1\right)x+3m\)
tìm m để khoảng cách từ tâm O tới đồ thị hàm số trên đạt max
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$
$\Leftrightarrow x^2-2mx+m^2-1=0$
$\Leftrightarrow x=m+1$ hoặc $x=m-1$
Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$
Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$
$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu
$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại
$BO=\sqrt{2}AO$
$\Leftrightarrow BO^2=2AO^2$
$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$
$\Leftrightarrow m=-3\pm 2\sqrt{2}$
Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)
Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta=1>0\) với mọi m
Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)
Theo giả thiết ta có :
\(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Nếu \(2m+2=0\Rightarrow m=-1\Rightarrow y=-2\)
=> ĐTHS là đường thẳng đi qua (0;-2) và // với trục Ox
=> Khoảng cách từ O đến đths là 2
Nếu \(2m+2\ne0\Rightarrow m\ne-1\)
Khi đó ĐTHS \(y=\left(2m+2\right)x+m-1\) là đường thẳng đi qua điểm \(A\left(\frac{1-m}{2m+2};0\right)\) và \(B\left(0;m-1\right)\)
(ĐTHS bạn tự vẽ nhé)
Kẻ OH vuông góc với AB => OH là khoảng cách từ O đến đths
Tam giác AOB vuông tại O có OH là đường cao ứng với cạnh huyền nên ta có hệ thức sau:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(\frac{1-m}{2m+2}\right)^2}+\frac{1}{\left(m-1\right)^2}=\frac{4m^2+8m+5}{m^2-2m+1}\)
\(\Rightarrow OH^2=\frac{m^2-2m+1}{4m^2+8m+5}\)
Đặt \(OH^2=a\ge0\)
\(\Rightarrow4m^2a+8ma+5a=m^2-2m+1\)
\(\Leftrightarrow m^2\left(4a-1\right)+2m\left(4a+1\right)+\left(5a-1\right)=0\)
\(\Delta^'=\left(4a+1\right)^2-\left(4a-1\right)\left(5a-1\right)=16a^2+8a+1-20a^2+9a-1\)
\(=-4a^2+17a=-a\left(4a-17\right)\)
\(\Delta^'\ge0\Leftrightarrow a\left(4a-17\right)\le0\Rightarrow0\le a\le\frac{17}{4}\)
\(\Rightarrow a_{max}=\frac{17}{4}\Rightarrow OH^2=\frac{17}{4}\Rightarrow OH=\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra khi: \(\frac{m^2-2m+1}{4m^2+8m+5}=\frac{17}{4}\Leftrightarrow4m^2-8m+4=68m^2+136m+85\)
\(\Leftrightarrow64m^2+144m+81=0\Leftrightarrow\left(8m+9\right)^2=0\Rightarrow m=-\frac{9}{8}\)
Vậy khoảng cách lớn nhất từ O đến đths là \(\frac{\sqrt{17}}{2}\) khi \(m=-\frac{9}{8}\)
Để hàm số y=(1-m)x+1 là hàm số bậc nhất thì \(1-m\ne0\)
\(\Leftrightarrow m\ne1\)
a) Để hàm số y=(1-m)x+1 đồng biến trên R thì 1-m>0
\(\Leftrightarrow-m>-1\)
hay m<1
Kết hợp ĐKXĐ, ta được: m<1
Vậy: Để hàm số y=(1-m)x+1 đồng biến trên R thì m<1
c)
Thay m=2 vào hàm số y=(1-m)x+1, ta được:
y=(1-2)x+1
\(\Leftrightarrow y=-x+1\)Gọi A(xA,yA) và B(xB,yB) lần lượt là giao điểm của đồ thị hàm số y=-x+1 với trục Ox và trục Oy
Vì A(xA,yA) là giao điểm của đồ thị hàm số y=-x+1 với trục Ox nên yA=0
Thay y=0 vào hàm số y=-x+1, ta được:
-x+1=0
\(\Leftrightarrow-x=-1\)
hay x=1
Vậy: A(1;0)
Vì B(xB,yB) là giao điểm của đồ thị hàm số y=-x+1 với trục Oy nên xB=0
Thay x=0 vào hàm số y=-x+1, ta được:
y=-0+1=1
Vậy: B(0;1)
Độ dài đoạn thẳng OB là:
\(OB=\sqrt{\left(x_O-x_B\right)^2+\left(y_O-y_B\right)^2}\)
\(\Leftrightarrow OB=\sqrt{\left(0-0\right)^2+\left(0-1\right)^2}=1\)(đvđd)
Độ dài đoạn thẳng OA là:
\(OB=\sqrt{\left(x_O-x_A\right)^2+\left(y_O-y_A\right)^2}\)
\(\Leftrightarrow OB=\sqrt{\left(0-1\right)^2+\left(0-0\right)^2}=1\)(đvđd)
Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)
\(\Leftrightarrow AB=\sqrt{\left(1-0\right)^2+\left(0-1\right)^2}=\sqrt{2}\)(đvđd)
Ta có: \(AB^2=\left(\sqrt{2}\right)^2=2\)
\(OA^2+OB^2=1^2+1^2=2\)
Do đó: \(AB^2=OA^2+OB^2\)(=2)
Xét ΔOAB có \(AB^2=OA^2+OB^2\)(cmt)
nên ΔOAB vuông tại O(Định lí Pytago đảo)
Kẻ OH⊥AB tại H
⇒OH là khoảng cách từ O đến (d)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAB vuông tại O có OH là đường cao ứng với cạnh huyền AB, ta được:
\(OH\cdot AB=OA\cdot OB\)
\(\Leftrightarrow OH\cdot\sqrt{2}=1\cdot1=1\)
hay \(OH=\dfrac{\sqrt{2}}{2}\)(đvđd)
Vậy: Khoảng cách từ O đến (d) là \(OH=\dfrac{\sqrt{2}}{2}\)
PT giao Ox: \(y=0\Leftrightarrow\left(m-1\right)x=-3m\Leftrightarrow x=\dfrac{3m}{1-m}\Leftrightarrow A\left(\dfrac{3m}{1-m};0\right)\Leftrightarrow OA=\left|\dfrac{3m}{1-m}\right|\)
PT giao Oy: \(x=0\Leftrightarrow y=3m\Leftrightarrow B\left(0;3m\right)\Leftrightarrow OB=\left|3m\right|\)
Gọi H là hình chiếu O lên đths
K/c từ O đến đths đạt max khi OH đạt max
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)
\(\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{\left(1-m\right)^2}{9m^2}+\dfrac{1}{9m^2}=\dfrac{m^2-2m+2}{9m^2}\)
Đặt \(\dfrac{1}{OH^2}=t\Leftrightarrow9m^2t=m^2-2m+2\)
\(\Leftrightarrow m^2\left(9t-1\right)+2m-2=0\)
Coi đây là PT bậc 2 ẩn m, PT có nghiệm khi:
\(\Delta=4-4\left(-2\right)\left(9t-1\right)\ge0\\ \Leftrightarrow4+72t-9\ge0\\ \Leftrightarrow t\ge\dfrac{5}{72}\Leftrightarrow\dfrac{1}{OH^2}\ge\dfrac{5}{72}\\ \Leftrightarrow OH^2\le\dfrac{72}{5}\Leftrightarrow OH\le\dfrac{6\sqrt{10}}{5}\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép
\(\Leftrightarrow m=-\dfrac{b}{2a}=-\dfrac{2}{18t-2}=-\dfrac{2}{18\cdot\dfrac{5}{72}-2}=\dfrac{8}{3}\)
cho em hỏi cái đoạn coi đây là PT bâc 2 ẩn m , cái hình tam giác là gì vậy ạ với lại 4 -4(-2) là ở đâu vậy ạ