Chứng minh rằng trong 15 số tự nhiên lớn hơn 1 không vượt quá 2004 và đôi một nguyên tố cùng nhau Tìm được một số là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
giả sử abc và ab+bc+ca không nguyên tố cùng nhau
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH:
TH1: a chia hết cho d => ab,ac chia hết cho d
mà ab+bc+ca chia hết cho d
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d => ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Gọi hai số nguyên tố sinh đôi là p và p+ 1 (p > 3), số tự nhiên nằm giữa hai số nguyên tố đó là p + 2.
Vì: p, p + 1, p + 2 là 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà p, p + 2 là hai số nguyên tố nên không chia hết cho 2 và 3 suy ra p + 1 chia hết cho 2 và 3 hay p + 1 chia hết cho 6.
Vậy số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
gọi hai số đó là a;a+2,số nằm giữa là a+1.
ta có :a;a+2 là số lẻ nên a+1 là số chẵn nên a+1:2
cứ ba số thì có một số chia hết cho 3 mà a;a+2 là số nguyên tố nên a+1 là số chia hết cho 3
a+1:2 va:3 nên a+1 :6
vậy a+1 chia hết cho 6
Gọi 2 số nguyên tố sinh đôi là p và p+ 2. Chứng minh rằng p+1 chia hết cho 2 và3
Giả sử n1, n2, …n15 là các số thoả món yờu cầu bài toỏn. Giả sử tất cả chỳng là hợp số. Gọi pi là ước nguyên tố nhỏ nhất của ni (i = 1, 2, …, 15).
Gọi p là số lớn nhất trong các số p1, p2, …,p15
Do các số n1, n2, …n15 là đôi nguyên tố cùng nhau nên các số p1, p2, …,p15 khỏc nhau tất cả.
Số nguyên tố thứ 15 là số 47 (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 ) ta có p ≥ 47 . Đối với số n có ước nguyên tố nhỏ nhất là p thì p ≤ n suy ra n ≥ p 2 ≥ 47 2 > 2004 (vụ lớ)
Vậy trong 15 số n1, n2, …n15 ta Tìm được một số nguyên tố.