K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Đáp án C

Phương pháp:

Kiểm tra M nằm trong hay ngoài mặt cầu.

Để giao tuyến là đường tròn có chu vi nhỏ nhất thì bán kính của đường tròn đó là nhỏ nhất

Cách giải:

x 2 + y 2 + z 2 = 9 có tâm  O(0;0;0)

Nhận xét: Dễ dàng kiểm tra điểm M nằm trong (S), do đó, mọi mặt phẳng đi qua M luôn cắt (S) với giao tuyến là 1 đường tròn.

Để giao tuyến là đường tròn có chu vi nhỏ nhất thì bán kính của đường tròn đó là nhỏ nhất

=> IO lớn nhất khi M trùng I hay OM vuông góc với (P)  

 

Vậy, (P) là mặt phẳng qua M và có VTPT là  O M → =(1;-1;1)

Phương trình mặt phẳng (P) là:

5 tháng 3 2018

25 tháng 4 2019

Đáp án là A.

+ Mặt phẳng chứa Ox có dạng  B y + C z = 0  

+ Do mặt cầu tiếp xúc với mặt phẳng nên:

2 B − C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3

Vậy mặt phẳng cần tìm 4 y + 3 z = 0

19 tháng 1 2019

Đáp án là A.

+ Mặt phẳng chứa Ox có dạng By+Cz=0

+ Do mặt cầu tiếp xúc với mặt phẳng nên  2 B - C B 2 + C 2 = 1 ⇔ B = 0 B = 4 ,   C = 3

Vậy mặt phẳng cần tìm  4y +3z=0

3 tháng 1 2020

Chọn D

Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.

Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.

Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)

Mặt phẳng (P) tiếp xúc với (S) nên

 

Thay 3a=2 (c+b ) vào (*) ta được:

 

TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).

TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ (P))

7 tháng 6 2019

Chọn A

Mặt cầu (S) có tâm I (1; 2; -1) và bán kính R = 1

Gọi vectơ pháp tuyến của mặt phẳng (Q) là  với

Mặt khác (Q) chứa trục hoành nên (Q)  có phương trình dạng (Q): By + Cz = 0

Lại có (Q) tiếp xúc mặt cầu (S) nên

+ Với B = 0 thì phương trình mặt cầu là z = 0 ( chính là mặt phẳng 0xy)

+ Với 3B – 4C = 0, chọn B = 4 => C = 3. Vậy (Q): 4y + 3z = 0

17 tháng 6 2019

25 tháng 2 2018

Đáp án A

Mặt cầu (S)  tâm I(-1;2;1)  bán kính R=√9=3.

13 tháng 3 2019


4 tháng 12 2019