Cho hình chóp S.ABC có SA=SB=SC=a. ∠ A S B = ∠ C S B = 60 ° , ∠ A S C = 90 ° Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp: Sử dụng công thức tính thể tích khối chóp khi biết ba góc ở một đỉnh và ba cạnh ở đỉnh đó.
(trong đó a, b, c là độ dài ba cạnh, x, y, z là số đo ba góc ở một đỉnh)
Sau đó tính khoảng cách dựa vào công thức tính thể tích h = 3 V h .
Cách giải: Áp dụng công thức trên ta có:
Đáp án D
Phương pháp:
- Gọi H là trực tâm tam giác, chứng minh S H ⊥ A B C bằng cách sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”.
- Tính độ dài SH bằng cách sử dụng hệ thức lượng giữa cạnh và đường cao trong tam giác vuông.
Cách giải: Gọi H là trực tâm của tam giác ABC.
Ta sẽ chứng minh SH là đường cao của hình chóp.
Gọi E, D lần lượt là hình chiếu của B,A lên AC,BC.
Chú ý khi giải: Từ nay về sau, các em có thể ghi nhớ hệ thức liên hệ giữa đường cao và cạnh trong hình chóp S.ABC mà có SA, SB, SC đôi một vuông góc, đó là 1 S H 2 = 1 S A 2 1 S B 2 + 1 S C 2
Đáp án C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC.
Ta có:
Chọn C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC
Ta có
Đáp án C
tính được