cho tứ giác ABCD có A=B và BC=AD CM Tg DAB=Tg CBA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) HS tự chứng minh
b) HS tự chứng minh
c) Sử dụng a), b) và tổng bốn góc trong tứ giác
Xét ΔDAB và ΔCBA có
DA=CB
\(\widehat{DAB}=\widehat{CBA}\)
BA chung
Do đó: ΔDAB=ΔCBA
Suy ra: DB=CA
xét tam giác deb và tam giác dab có
góc bad= góc bed
bd là cạnh chung
góc abd =góc ebd
=>tg ded =tg dab
1) cho tư giacs ABCD có góc A= góc B và BC = AD . Chứng minh :
TAM GIÁC DAB = TAM GIÁC CBA , BD = AC
Xét ∆BAD và ∆ABC ta có :
AD = BC
AB chung
DAB = CBA (gt)
=> ∆BAD = ∆ABC (c.g.c)
=> BD = AC ( tương ứng)
a)
Xét 2 tg ABD và ACD, có
AD cạnh chung
AB=AC (tgABC cân tại A)
góc BAD = góc CAD
=> tg ABD=tg ACD
b)
Trong tgABC, G là trọng tâm và AD là đường phân giác.
Mà trong 1 tg cân đường phân giác trùng lên đường trung tuyến.
Mặt khác thì trọng tâm nằm trên đường trung tuyến.
=> 3 điểm A,D,G nắm trên cùng 1 đoạn thẳng
Hay: 3 điểm A,D,G thẳng hàng
c)
Trong tg cân ABC, có đường phân giác AD
=> AD trùng lên đường trung trực xuất phát từ A
=> AD>AB ( tính chất đường vuông góc với đường xiên)
d)
Ta có: tg ABD vuông tại D (AD là đường trung trực)
=> AD^2 +DB^2 = AB^2 (định lí Py-ta-go)
=>AD^2 +5^2= 13^2 (DB^2=5^2 vì DB=DC=10/2=5)
=>AD^2=13^2-5^2=144=12^2
=> AD=12 (cm)
Mà AG là trọng tâm
=>AG=2/3 AD=8 cm