Bất phương trình nào sau đây không tương đương với bất phương trình x + 5 ≥ 0 ?
A. x - 1 2 x + 5 ≥ 0
B. - x 2 x + 5 ≤ 0
C. x + 5 x + 5 ≥ 0
D. x + 5 x - 5 ≥ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
+) Xét bất phương trình x + 5 ≥ 0 ⇔ x ≥ -5
⇒ Tập nghiệm của bất phương trình là S = [-5;+ ∞ )
+) Xét bất phương trình (x - 1 ) 2 (x + 5) ≥ 0
Tập nghiệm của bất phương trình là S = [-5; + ∞ ).
+) Xét bất phương trình - x 2 (x + 5) ≤ 0
Tập nghiệm của bất phương trình là S = [-5; + ∞ ).
+) Xét bất phương trình
Tập nghiệm của bất phương trình là S = [-5; + ∞ ).
+) Xét bất phương trình
Tập nghiệm của bất phương trình là S = [5; + ∞ ).
Vậy bất phương trình
không tương đương với bất phương trình x + 5 ≥ 0.
Đáp án B.
Ta thấy bất phương trình ở đề bài và bất phương trình (x - 1 ) 2 (x + 5) ≥ 0 cùng có tập nghiệm là: [-5; + ∞ ). Do đó, hai bất phương trình này tương đương với nhau
3x - 2(y - x + 1) > 0 ⇔ 3x - 2y + 2x - 2 > 0 ⇔ 5x - 2y - 2 > 0
Đáp án là B.
Chọn B
TH1.Nếu a-1=0 hay a =1 thì
(1) thành: 2 > 0 ( luôn đúng mọi x) Tập nghiệm của bất phương trình T = R
(2) thành: 2x+1> 0 hay x> -1/2 Tập nghiệm của bất phương trình
Vậy a= 1 không thỏa yêu cầu bài toán.
TH2. Nếu a+1= 0 hay a= -1thì
(1) thành: -2x=4>0 hay x< 2. Tập nghiệm của bất phương trình T2 = (-∞; 2)
(2) thành: 3> 0 luôn đúng Tập nghiệm của bất phương trình T= R
Vậy a= -1 không thỏa yêu cầu bài toán.
TH3.
(1) : (a-1) x> a-3 và (2) : (a+1) x> a-2
Hai bất phương trình tương đương
Ta thấy x= 1 không là nghiệm của bất phương trình đã cho nhưng x= 1 là nghiệm của bất phương trình 4(x -1)+ 1> 2x(x-1) – 1.
Do đó, hai bất phương trình này không tương đương với nhau.
Chọn C.
a) \({x^2} + x - 6 \le 0\) là một bất phương trình bậc hai một ẩn
Vì \({2^2} + 2 - 6 = 0\) nên \(x = 2\) là nghiệm của bất phương trình trên
b) \(x + 2 > 0\) không là bất phương trình bậc hai một ẩn
c) \( - 6{x^2} - 7x + 5 > 0\) là một bất phương trình bậc hai một ẩn
Vì \( - {6.2^2} - 7.2 + 5 = - 33 < 0\) nên \(x = 2\) không là nghiệm của bất phương trình trên
Đáp án D