Hình chóp S.ABC có đáy là tam giác ABC vuông tại A, có SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = a. Mặt cầu đi qua các đỉnh có bán kính r bằng:
A. 1 2 a 2 + b 2 + c 2
B. 2 a 2 + b 2 + c 2
C. 2 a + b + c 3
D. a 2 + b 2 + c 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bán kính mặt cầu ngoại tiếp tứ diện vuông S.ABC đỉnh A là
R = A S 2 + A B 2 + A C 2 4 = 5 2
Chọn đáp án A.
Chọn đáp án A.
Bán kính mặt cầu ngoại tiếp tứ diện vuông S.ABC đỉnh A là:
Chọn A.
Phương pháp:
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp có cạnh bên vuông góc với đáy là
R = h 2 4 + S d a y 2
trong đó h là chiều cao của khối chóp và Rday là bán kính đường ròn ngoại tiếp đáy.
Cách giải:
Đáp án C.
Hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh bên SA vuông góc với mặt phẳng (ABC) thì mặt cầu ngoại tiếp hình chóp S.ABC có bán kính r = 1 2 . S A 2 + A B 2 + A C 2 . Với giả thiết của bài toán, ta có r = a 6 2 .
Phân tích phương án nhiễu:
Phương án A: Sai do HS nhớ đúng công thức tính r = 1 2 . S A 2 + A B 2 + A C 2 nhưng lại biến đổi nhầm x 2 + y 2 + z 2 = x + y + z .
Phương án B: Sai do HS có thể gắn hệ trục tọa độ Oxyz vào hình chóp (A trùng với O và B, C, S lần lượt thuộc các tia Ox, Oy, Oz) và nhầm rằng tâm của mặt cầu chính là trọng tâm G a 3 ; a 2 3 ; a 3 3 của tam giác ABC nên tính được r = O G = a 6 3 .
Phương án D: Sai do HS nhớ nhầm công thức r = 1 2 . S A 2 + A B 2 + A C 2 thành r = S A 2 + A B 2 + A C 2 .
Đáp án C
Hướng dẫn giải:
Gọi H, K lần lượt là trung điểm của BC và SA.
Dựng đường thẳng d đi qua H và vuông góc với (ABC). Khi đó d//SA.
Trong mặt phẳng (SAH) dựng đường thằng d 1 đi qua K và vuông góc với SA.
Khi đó, d 1 //AH.
Gọi I = d ∩ d 1 tại. Ta có được IA = IB = IC = IS.
Khi đó mặt cầu cần tìm ở đề bài đi qua các điểm A, B, C, S có tâm là I và bán kính là R = IA.
Dễ thấy A H = 1 2 B C = b 2 + c 2 2
và I H = 1 2 S A = a 2 .
Trong ∆ I A H có
Vậy là ta hoàn thành xong bài toán.
Đáp án A
Tâm đường tròn ngoại tiếp đáy là trung điểm cạnh BC. Ta có:
r = B C 2 = b 2 + c 2 2 ⇒ R = S A 2 2 + r 2 = a 2 4 + b 2 + c 2 4 = 1 2 a 2 + b 2 + c 2