K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

Đáp án C

Để phương trình vô nghiệm thì 3 2 + m 2 < 5 2 ⇔ m 2 < 16 ⇔ - 4 ≤ m ≤ 4 .

15 tháng 6 2019

28 tháng 1 2019

30 tháng 12 2019

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

15 tháng 8 2021

a) 3sinx= 1-m => \(-3\le1-m\le3\) \(\Leftrightarrow-2\le m\le4\)

15 tháng 8 2021

a, \(3sinx+m-1=0\)

\(\Leftrightarrow sinx=\dfrac{1-m}{3}\)

Phương trình có nghiệm khi:

\(-1\le\dfrac{1-m}{3}\le1\)

\(\Leftrightarrow-3\le1-m\le3\)

\(\Leftrightarrow-2\le m\le4\)

a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0

=>4-4m+12>=0

=>-4m+16>=0

=>-4m>=-16

=>m<=4

b: x1-x2=4

x1+x2=2

=>x1=3; x2=-1

x1*x2=m-3

=>m-3=-3

=>m=0(nhận)

2 tháng 9 2021

Đặt x^2=t

pt có 4 no pb=>pt2t^2-(m-1)t+m-3=0 có 2 no pb >0

=>\(\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}m^2-2m+1-4m+12>0\\\dfrac{m-3}{2}>0\\m-1>0\end{matrix}\right.\)=>...=>m>3

2 tháng 9 2021

Vậy m>3

NV
6 tháng 9 2020

\(\Leftrightarrow cosx+2sinx+3=2m.cosx-m.sinx+4m\)

\(\Leftrightarrow\left(m+2\right)sinx+\left(1-2m\right)cosx=4m-3\)

Pt đã cho có nghiệm khi và chỉ khi:

\(\left(m+2\right)^2+\left(1-2m\right)^2\ge\left(4m-3\right)^2\)

\(\Leftrightarrow11m^2-24m+4\le0\)

\(\Rightarrow\frac{2}{11}\le m\le2\)

NV
29 tháng 9 2020

a/ \(m=0\) pt vô nghiêm

Với \(m\ne0\Rightarrow cosx=\frac{m+1}{m}\)

\(-1\le cosx\le1\Rightarrow-1\le\frac{m+1}{m}\le1\)

\(\Rightarrow m\le-\frac{1}{2}\)

b/ \(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-\left(1-2sin^22x\right)=m\)

\(\Leftrightarrow\frac{5}{4}sin^22x=m\)

Do \(0\le\frac{5}{4}sin^22x\le\frac{5}{4}\Rightarrow0\le m\le\frac{5}{4}\)

c/ \(\Leftrightarrow1-\frac{3}{4}sin^22x=m\left(1-\frac{1}{4}sin^22x\right)\)

\(\Leftrightarrow\left(m-3\right)sin^22x=4m-4\)

- Với \(m=3\) pt vô nghiệm

- Với \(m\ne3\Rightarrow sin^22x=\frac{4m-4}{m-3}\)

Do \(0\le sin^22x\le1\Rightarrow0\le\frac{4m-4}{m-3}\le1\)

\(\Rightarrow\frac{1}{3}\le m\le1\)