4 like chào xuân. rộn ràng năm mới.Cho tam giác ABC cân tại A, có góc A = 90o. Trên tia đối của AC lấy AD=AC. M,N là trung điểm của BC và BD. Từ M kẻ đường thẳng vuông góc CN cắt BA tại K. Chứng minh rằng:tam giác BMK = tam giác CMD.Gợi ý : biết góc DBC = 90o , D = C=45o và DM = CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)
Thay số:BC2=62+82
BC2=36+64=100
=>BC=10(cm)
b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:
Bi chung, góc ABI= góc HBI ( cmt)
=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)
c)Gọi giao của AH và BI là K
Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)
Xét tam giác AKB và tam giác HKB có:
AB=HB (cmt)
góc ABK=góc HBK(cmt)
BK chung
=. tam giác AKB= tam giác HKB ( c.g.c)
=> KB=KH ( 2 cạnh tương ứng)
=> K là trung điểm của BH (1)
Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2)
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)