Biết rằng ∫ 4 a + b 1 - x 2 + 6 x - 5 d x = π 6 , ở đó a,b là các số nguyên dương và 4 < a + b < 5 . Tổng a+b bằng
A. 5
B. 7
C. 4
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.
(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.
Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.
Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:
Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì
a) Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.
b) Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ modulo m.
Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác
(x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).
Ta có
Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì
(ax1,a x2, …, axj(m)) cũng là một hệ thặng dư thu gọn modulo m.
Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.
Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.
~Hok tốt`
P/s:Ko chắc
\(a< b< c< d< e< f\)
\(\Rightarrow a+c+e< b+d+f\)
\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)
\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)
a)Để 13/x-1 la so nguyên thì 13/x=1 nên x=13 b)Để (x+3)/(x-2) là so nguyên nên x+3 chia het cho x-2 (x+3)-(x-2) chia het cho x-2 nên 5 chia het cho x-2 nên x=7 Bài 5: a/b=c/d nên a/c=b/d = (a+b)/(c+d) nên (a+b)/b=(c=d)/d còn Bài 6 bạn tự làm
1, a) Để 13/x-1 là số nguyên thì 13 chia hết cho x-1
Suy ra x-1 thuộc {1;-1;13;-13}
x thuộc {2;0;14;-12}
b)Để x+3/x-2 là số nguyên thì x+3 chia hết cho x-2
hay x-2+5 chia hết cho x-2
Vì x-2 chia hết cho x-2 nên 5 phải chia hết cho x-2
Suy ra x-2 thuộc {1;-1;5;-5}
x thuộc {3;1;7;-3}
c)Để x-2/5 là số nguyên thì x-2 chia hết cho 5
Suy ra x-2 = 5k (k thuộc Z)
x = 5k +2
Vậy....
2, a)Vì a/2 = 3/6
nên a.6 = 3.2
a.6 = 6
Suy ra a=1
Vậy a=1
b)Vì b/-2 = -8 /b nên b.b = -2 . (-8)
Suy ra b^2 = 16
b^2 = 4^2 hoặc b^2 = (-4)^2
Suy ra b =4 hoặc b= -4
Vậy...
c)Vì 3/c-5 = 4/c+2 nên -4.(c-5) = 3.(c+2)
hay -4.c + 20 = 3c + 6
20 - 6 = 3c + 4c
14 = 7c
Suy ra c=2
Vậy....
d)Vì a/3 = 6/b = c/10 = -1/2
nên c/10 = -1/2 nên 2.c = -10 Suy ra c=-5
Suy ra a/3 = 6/b = -5/10 = -1/2
Ta có: 6/b = -1/2 nên -1.b = 12 Suy ra b = -12
a/3 = -1/2 nên 2a = -3 Vì 3 không chia hết cho 2 nên a không là số nguyên
Vậy....
3,Vì a/b=b/c=c/a nên a/b=b/c=c/a=a+b+c/c+b+a =1
Suy ra a=b=c
Vậy....
P/s:Áp dụng công thức a/b=b/a=a+b/b+a
4,Vì x/5=-3/y nên -15 = xy
Suy x và y là ước của -15
Ta có bẳng sau
w | 1 | -1 | 3 | -3 | -15 | 15 |
| ||||||||||||||||||
y |
Vậy....(Cái bảng hơi lộn xộn 1 xíu nhé!Xin lỗi)
Bài 2
a. 25-|x|=10
|x| =25-10
|x|=15
Vậy x=15 hoặc x=-15
sorry mk chưa làm được câu tiếp theo
b, |x-2|+7=12
|x-2| = 12-7
|x-2| = 5
+) Nếu x-2=5 thì x=7
+) Nếu x-2=-5 thì x=-3
Đáp án D