Tìm giá trị cực tiểu yct của hàm số y = 1 3 x 3 - x 2 - 3 x + 2
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$y'=x^2-(m-1)x-m=(x+1)(x-m)$
$y''=2x-(m-1)$
Nếu $x_{ct}=-1$ thì $y''(-1)=-1-m>0\Leftrightarrow m< -1$
$y_{ct}=\frac{1}{2}m+\frac{1}{2}=\frac{1}{3}$
$\Leftrightarrow m=\frac{-1}{3}$ (loại vì $m< -1$)
Nếu $x_{ct}=m$ thì $y''(m)=m+1>0\Leftrightarrow m>-1$
$y_{ct}=\frac{-1}{6}m^3+\frac{1}{2}m^2+\frac{1}{3}=\frac{1}{3}$
$\Leftrightarrow m=0$ (chọn) hoặc $m=-3$ (loại)
Vậy $m=0$
Ta có 64 = -8a + 4b - 2c + d; -61 = 27a + 9b + 3c +d
Từ y ' = 3 a x 2 + 2 b x + c ta thu được hai phương trình 0 = 12a - 4b + c; 0 = 27a + 6b + c
Giải hệ gồm 4 phương trình trên ta thu được a = 2; b = -3; c = -36; d = 20 hay a + b + c + d = -17
Đáp án C
Đáp án B