K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Đáp án B.

Từ

f x . f ' x = 2 x f 2 x + 1 ⇒ f x . f ' x f 2 x + 1 = 2 x ⇒ ∫ f x . f ' x f 2 x + 1 d x = ∫ 2 x d x

 (1)

Đặt  

f 2 x + 1 = t ⇒ f 2 x = t 2 − 1 ⇒ 2 f x . f ' x d x = 2 t d t ⇒ f x . f ' x d x = t d t

Suy ra   ∫ f x . f ' x f 2 x + 1 x = ∫ t d t t = ∫ d t = t + C 1 = f 2 x + 1 + C 1   ∫ 2 x d x = x 2 + C 2

Từ (1) ta suy ra  f 2 x + 1 + C 1 = x 2 + C 2   . Do   f 0 = 0 nên C 2 − C 1 = 1 .

Như vậy  

f 2 x + 1 = x 2 + C 2 − C 1 = x 2 + 1 ⇒ f 2 x = x 2 + 1 2 − 1 = x 4 + 2 x 2

⇒ f x = x 4 + 2 x 2 = x x 2 + 2 = x x 2 + 2

 (do x ∈ 1 ; 3 ).

Ta có f ' x = x 2 + 2 + x 2 x 2 + 2 = 2 x 2 + 1 x 2 + 2 > 0, ∀ x ∈ ℝ ⇒  Hàm số f x = x x 2 + 2  đồng biến trên R nên f x  cũng đồng biến trên  1 ; 3   .

Khi đó M = max 1 ; 3 f x = f 3 = 3 11  và m = min 1 ; 3 f x = f 1 = 3 .

Vậy 

P = 2 M − m = 6 11 − 3 ⇒ a = 6 ; b = 1 ; c = 0 ⇒ a + b + c = 7

 

1 tháng 7 2018

13 tháng 9 2018

Chọn đáp án C.

Lấy tích phân hai vế trên đoạn [0;2] có 

 

Tích phân từng phần có

 

 

NV
7 tháng 11 2021

Dạng: \(....f'\left(x\right)+...f\left(x\right)=...\)

Ý tưởng luôn là đưa về đạo hàm của tổng sau đó lấy nguyên hàm 2 vế.

Thêm bớt sao cho vế trái biến thành: \(u\left(x\right).f'\left(x\right)+u'\left(x\right).f\left(x\right)\) là được

So sánh nó với vế trái đề bài, dư ra \(u'\left(x\right)\) ở trước \(f\left(x\right)\) nên ta chia nó (vế kia vẫn ko quan tâm)

Được: \(\dfrac{u\left(x\right)}{u'\left(x\right)}.f'\left(x\right)+f\left(x\right)\)

So sánh nó với đề bài, vậy ta cần tìm hàm \(u\left(x\right)\) sao cho:

\(\dfrac{u\left(x\right)}{u'\left(x\right)}=x\left(x+1\right)\)

Nhưng để thế này ko lấy nguyên hàm được, phải nghịch đảo 2 vế:

\(\dfrac{u'\left(x\right)}{u\left(x\right)}=\dfrac{1}{x\left(x+1\right)}\)

Giờ thì lấy nguyên hàm: \(\int\dfrac{u'\left(x\right)}{u\left(x\right)}dx=\int\dfrac{dx}{x\left(x+1\right)}\Leftrightarrow ln\left|u\left(x\right)\right|=ln\left|\dfrac{x}{x+1}\right|+C\)

Tới đây suy được \(u\left(x\right)=\dfrac{x}{x+1}\) \(\Rightarrow\) vế trái cần có dạng: 

\(\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)\)

Nhìn vào đây là xong rồi. Bài toán sẽ được giải như sau:

Chia 2 vế giả thiết cho \(\left(x+1\right)^2\):

\(\Rightarrow\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)=\dfrac{x}{x+1}\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}+f\left(x\right)\right)'=\dfrac{x}{x+1}\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow\dfrac{x}{x+1}+f\left(x\right)=\int\dfrac{x}{x+1}dx=\int\left(1-\dfrac{1}{x+1}\right)dx=x-ln\left|x+1\right|+C\)

\(\Rightarrow f\left(x\right)=x-\dfrac{x}{x+1}-ln\left|x+1\right|+C=\dfrac{x^2}{x+1}-ln\left|x+1\right|+C\)

Thay \(x=1\)

\(\Rightarrow f\left(1\right)=\dfrac{1}{2}-ln2+C\Rightarrow-2ln2=\dfrac{1}{2}-ln2+C\)

\(\Rightarrow C=-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{x^2}{x+1}-ln\left|x+1\right|-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(2\right)=...\)

23 tháng 10 2019

22 tháng 3 2019

16 tháng 4 2018

14 tháng 7 2019

Đáp án A

14 tháng 11 2018

Chọn A

fXxjlwbZlzMv.png.

Nhân 2 vế của bnFd0EzcrH3t.png với Sa1d8HEiA3uM.png ta được AhQbU9ZfKp8l.png.

Hay QjawkYk6dAYZ.png.

Xét mrje45jPV41Z.png.

Đặt QFfevzfjSEAB.png.

cpaMcrFt0yym.png

Suy ra OY3JS5dsj87z.png.

 

Theo giả thiết OE4BLB3rYVup.png nên Pyg0gyR7C2os.png

sVNQfABwujlG.png.

6 tháng 7 2017

Đáp án B

24 tháng 3 2019