Có bao nhiêu số chẵn mà mỗi số có 4 chữ số đôi một khác nhau?
A. 2296
B. 2520
C. 4500
D. 50000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Giả sử số chẵn có 4 chữ số đôi một phân biệt cần tìm có dạng
Với d = 0 thì a có 9 cách chọn, b có 8 cách chọn, c có 7 cách chọn. Do đó số các số chẵn cần tìm trong trường hợp này là 9.8.7 = 504
Với d ≠ 0 => d ∈ 2 ; 4 ; 6 ; 8 .Có 4 cách chọn d. Thì a có 8 cách chọn, b có 8 cách chọn, c có 7 cách chọn. Do đó số các số chẵn cần tìm trong trường hợp này là 4.8.8.7 = 1792
Số các số chẵn thỏa mãn yêu cầu bài toán là 504 + 1792 = 2296
Đáp án A
Gọi số cần lập là a b c d ¯ v ớ i a ; b ; c ; d ∈ 0 ; 1 ; 2 . . . 9
TH1: Với d = 0 suy ra a,b,c
có A 9 3 cách chọn và sắp xếp
TH2: Với d ∈ 2 ; 4 ; 6 ; 8
⇒ a có 8 cách chọn b , c c ó A 8 2 cách chọn và sắp xếp
Theo quy tắc nhân có 4.8. A 8 2 = 32 A 8 2 số
Áp dụng QTC cho cả 2 TH ta có
32 A 8 2 + A 9 3 = 2296 số
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
a. Số số lập được: \(5.5=25\) số
b. \(5.5.4=100\) số
c. Gọi số đó là abcd
TH1: d=0 \(\Rightarrow abc\) có \(A_5^3=60\) cách
TH2: \(d\ne0\Rightarrow d\) có 2 cách, abc có \(4.4.3=48\)
Tổng cộng: \(60+2.48=156\) số
d. Gọi số đó là abcde
e có 3 cách chọn
abcd có \(4.4.3.2=96\) cách
Tổng cộng: \(3.96=288\) số
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
dài quá
botay.com.vn
Đáp án A
Gọi số cần lập là a b c d ¯ với a ; b ; c ; d ∈ 0 ; 1 ; 2....9
TH1: Với d = 0 suy ra a ; b ; c có A 9 3 cách chọn và sắp xếp
TH2: Với d ∈ 2 ; 4 ; 6 ; 8 ⇒ a có 8 cách chọn b , c có A 8 2 cách chọn và sắp xếp
Theo quy tắc nhân có 4.8. A 8 2 = 32 A 8 2 số
Áp dụng QTC cho cả 2 TH ta có A 9 3 + 32 A 8 2 = 2296 số