K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

14 tháng 10 2019

24 tháng 11 2019

Đáp án là B

Tập giá trị của hàm số  log a x = R

29 tháng 12 2017

Đáp án D

Vậy để bất phương trình có nghiệm thực thì m ≥ 1 

21 tháng 8 2018

Đáp án A

Vậy: m ∈ 2 ; 6 .

 

7 tháng 4 2017

Chọn A.

Phương pháp: Đánh giá giá trị biểu thức (hàm số).

7 tháng 7 2017

16 tháng 9 2019

30 tháng 10 2017

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

24 tháng 11 2021

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

15 tháng 12 2021

\(t^2-4t-3+m=0\Leftrightarrow t^2-4t-3=-m\)

\(có-2nghiệm-pb-trên[0;\text{+∞})\)

\(xét-bảng-biến-thiên-củaf\left(t\right)=t^2-4t-3,trên[0;\text{+∞})\)

f(t) 0 2 +∞ -∞ -3 -7 -m -m t

dựa vào bảng biến thiên ta thấy số nghiệm của phương trình f(t)

là số giao điểm của đường thẳng y=-m 

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)