Trong không gian Oxyz, cho tam giác OAB với O(0;0;0), A(-1;8;1), B(7;-8;5) . Phương trình đường cao OH của tam giác OAB là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Để ý rằng OH nằm trong mặt phẳng (OAB) và OH vuông góc với AB, nên một vecto chỉ phương của OH là tích có hướng của A B → và vecto pháp tuyến của mặt phẳng (OAB).
Đáp án A
Ta có: A B → 2 ; 1 ; 0 , O B → 1 ; 0 ; 0 ⇒ d O , A B = A B → ; O B → A B → = 1 5
Đáp án A
Phương pháp:
Công thức khoảng cách từ điểm đến đường thẳng trong không gian:
là VTCP của Δ và M là điểm bất kì thuộc
Cách giải:
Độ dài đường cao kẻ từ O của tam giác OAB bằng khoảng cách từ O đến đường thẳng AB:
(S) có tâm I ( 2;2;2 ), bán kính R = 2 3 . Nhận thấy O và A đều thuộc (S). Tam giác OAB đều, có bán kính đường tròn ngoại tiếp r = O A 3 = 4 2 3
Khoảng cách d ( I; (P) ) = R 2 - r 2 = 2 3
(P) đi qua O có phương trình dạng: ax + by +cz = 0
(P) đi qua A, suy ra b = -a
d ( I; (P) ) = 2 3 ⇔ 2 a + b + c a 2 + b 2 + c 2 = 2 3
⇔ 2 c 2 a 2 + c 2 = 2 3 ⇔ 4 c 2 2 a 2 + c 2 = 4 3 ⇔ 12 c 2 = 8 a 2 + 4 c 2 ⇔ c 2 = a 2 ⇔ c = ± a
Vậy có hai mặt phẳng cần tìm: x - y + z = 0; x - y - z = 0
Đáp án B
Đáp án C.
Đặt B x ; y ; z . Ta có O A 2 = 8, Δ O A B đều ⇒ O A 2 = O B 2 = A B 2 = 8 .
Mà B ∈ S ⇒ Ta có hệ x 2 + y 2 + z 2 − 2 x − 2 y − 2 z = 0 1 x 2 + y 2 + z 2 = 8 (2) x − 2 2 + y − 2 2 + z 2 = 8 (3)
Thế (2) vào (1) và (3) ta được: x + y + z = 4 x + y = 2 ⇔ z = 2 y = 2 − x .
Thế vào (2):
x 2 + 2 − x 2 = 8 ⇔ 2 x 2 − 4 x = 0 ⇔ x = 0 l x = 2
Với x = 2 ⇒ y = 0 ⇒ B 2 ; 0 ; 2
⇒ n → = O A → , O B → = 4 ; − 4 ; − 4 ⇒ Phương trình O A B : x − y − z = 0 .
Đáp án D
Để ý rằng OH nằm trong mặt phẳng (OAB) và OH vuông góc với AB, nên một vecto chỉ phương của OH là tích có hướng của A B → và vecto pháp tuyến của mặt phẳng (OAB).