K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

a, Tam giác BDA và tam giác CEA có :

BA = CA (gt)

góc A : chung 

góc BDA = góc CEA (=90o)

=> Tam giác BDA = tam giác CEA 

=> BD = CE ( 2 cạnh tương ứng )

b,Tam giác BDA = tam giác CEA (cmt) => AD=AE ( 2 cạnh tương ứng)

Ta có AB = AC (gt) , AE=AD(cmt) => AB - AE = AC - AD hay EB= DC 

Tam giác BED và tam giác CDB có 

BD = CE (cmt)

BC : cạnh chung 

EB = DC (cmt)

=> tam giác BEC =tam giác CDB 

=> góc BCE = góc CBD

Vì AB = AC => tam giác ABC cân tại A => góc B = góc C

mà góc BCE = góc CBD => góc EBD = góc DCE hay góc EBO = góc DCO 

ΔOEBΔOEBvà ΔODCΔODCcó :

ˆOEB=ˆODC(=90o)OEB^=ODC^(=90o)

EB = DC (cmt)

ˆEBO=ˆDCO(cmt)EBO^=DCO^(cmt)

⇒ΔOEB=ΔODC(g.c.g)⇒ΔOEB=ΔODC(g.c.g)

c,ΔEBO=ΔDCO(cmt)⇒BO=COΔEBO=ΔDCO(cmt)⇒BO=CO(2 cạnh tương ứng)

ΔOABΔOABvà ΔOACΔOAC

AB = AC (gt)

AO : cạnh chung 

OB = OC (gt)

⇒ΔOAB=ΔOAC(c.c.c)⇒ˆOAB=ˆOAC⇒ΔOAB=ΔOAC(c.c.c)⇒OAB^=OAC^( 2 góc t.ứng)

AO là tia p/g của góc BAC

d,Đề sai nha 

10 tháng 1 2019

A B C D E O 1 1 H

10 tháng 1 2019

a, Tam giác BDA và tam giác CEA có :

BA = CA (gt)

góc A : chung 

góc BDA = góc CEA (=90o)

=> Tam giác BDA = tam giác CEA 

=> BD = CE ( 2 cạnh tương ứng )

b,Tam giác BDA = tam giác CEA (cmt) => AD=AE ( 2 cạnh tương ứng)

Ta có AB = AC (gt) , AE=AD(cmt) => AB - AE = AC - AD hay EB= DC 

Tam giác BED và tam giác CDB có 

BD = CE (cmt)

BC : cạnh chung 

EB = DC (cmt)

=> tam giác BEC =tam giác CDB 

=> góc BCE = góc CBD

Vì AB = AC => tam giác ABC cân tại A => góc B = góc C

mà góc BCE = góc CBD => góc EBD = góc DCE hay góc EBO = góc DCO 

\(\Delta OEB\)và \(\Delta ODC\)có :

\(\widehat{OEB}=\widehat{ODC}\left(=90^o\right)\)

EB = DC (cmt)

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

\(\Rightarrow\Delta OEB=\Delta ODC\left(g.c.g\right)\)

c,\(\Delta EBO=\Delta DCO\left(cmt\right)\Rightarrow BO=CO\)(2 cạnh tương ứng)

\(\Delta OAB\)và \(\Delta OAC\)

AB = AC (gt)

AO : cạnh chung 

OB = OC (gt)

\(\Rightarrow\Delta OAB=\Delta OAC\left(c.c.c\right)\Rightarrow\widehat{OAB}=\widehat{OAC}\)( 2 góc t.ứng)

AO là tia p/g của góc BAC

d,Đề sai nha 

16 tháng 4 2022

Cứu tớ vsss:<

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đo: ΔABD=ΔACE

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

Suy ra: \(\widehat{EAI}=\widehat{DAI}\)

hay AI là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc A chung

=>ΔADB=ΔAEC

=>góc ABD=góc ACE

b: góc HBC+góc ABD=góc ABC

góc HCB+góc ACE=góc ACB

mà góc ABD=góc ACE; góc ABC=góc ACB

nên góc HBC=góc HCB

=>ΔBHC cân tại H

=>HB=HC>HD

15 tháng 12 2017

A B C I K H M

a) xét tam giác AHB vuông tại H và tam giác AKC vuông tại K có

góc A chung

AB = AC (gt)

Vậy tam giác AHB = tam giác AKC ( cạnh huyền góc nhọn)

suy ra BH = CK, AH = AK

b) ta có AH = AK; AB = AC

mà BK = AB - AK  và  HC = AC - AH

=> Bk = HC

Xét hai tam giác vuông tam giác BIK và tam giác CIH có:

góc KIB = góc HIC ( đối đỉnh)

BK = HC (cmt)

Vậy tam gics BIK = tam giác CIH

c) M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC

mà tam giác ABC là tam giác cân tại A nên AM đồng thời là trung tuyến, đường cao

mặt khác BH và Ck cũng là đường cao của tam giác ABC nên  BH; CK; Am đồng quy tại 1 điểm

Suy ra A; I; M thẳng hàng

24 tháng 1 2021

undefined

\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)

\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)

\(AB=AC\left(cmt\right)\left(1\right)\)

\(\widehat{A}\text{ chung}\left(2\right)\)

\(AD=AE\left(gt\right)\left(3\right)\)

\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)

\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)

\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)

\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)

\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)

\(\Rightarrow BE=CD\)

\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)

\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)

\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)

\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)

\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)

\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)

\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)

\(BE=CD\left(cmt\right)\left(7\right)\)

\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)

\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)

\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)

\(\Rightarrow\Delta IBC\text{ cân tại I}\)

\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)

\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)

\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)

\(AB=AC\left(\text{câu a}\right)\left(9\right)\)

\(AM\text{ chung}\left(10\right)\)

\(BM=CM\left(cmt\right)\left(11\right)\)

\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)

\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)

\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)

\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)

\(EI=DI\left(cmt\right)\left(12\right)\)

\(AI\text{ chung}\left(13\right)\)

\(AE=AD\left(gt\right)\left(14\right)\)

\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)

\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)

\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)

\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\)

=>\(\widehat{OBE}=\widehat{OCD}\)

ΔABD=ΔACE

=>AD=AE

AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC

c: ΔOEB=ΔODC

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AH làđường trung tuyến

nên AH là phân giác của góc BAC

mà AO là phân giác của góc BAC(cmt)

và AO,AH có điểm chung là A

nên A,O,H thẳng hàng