Khi đặt t = log5 x thì bất phương trình log 5 2 5 x - 3 log 5 x - 5 ≤ 0 trở thành bất phương trình nào dưới đây?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
B
P
T
⇔
1
+
log
5
x
2
=
6
log
5
x
−
5
≤
0
⇔
log
5
2
x
−
4
log
5
x
≤
0
→
t
=
log
5
x
t
2
−
4
t
−
4
≤
0.
Đáp án C.
Ta có:
log 5 2 5 x − 3 log 5 x − 5 ≤ 0 ⇔ log 5 5 x 2 − 6 log 5 x − 5 ≤ 0 ⇔ 1 + log 5 x 2 − 6 log 5 x − 5 ≤ 0 ⇔ log 5 2 x − 4 log 5 x − 4 ≤ 0.
Đặt t = log 5 x thì bất phương trình trở thành t 2 − 4 t − 4 ≤ 0.
\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)
d, Điều kiện: x > 1
\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)
e, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)
f, Điều kiện: x > 4
\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)
Bạn sử dụng công cụ gõ công thức có sẵn này ở chỗ khoanh đỏ viết lại đề được không, sử dụng rất đơn giản
Chứ đề thế này không thể dịch nổi
Đáp án D
Điều kiện 40 < x < 60
Vậy x cần tìm theo yêu cầu đề là các số nguyên dương chạy từ 41 đến 59; trừ giá trị 50. Có tất cả 18 giá trị thỏa mãn.
a, Điều kiện: x > 0
\(log_3\left(x\right)< 2\\ \Rightarrow0< x< 9\)
b, Điều kiện: x > 5
\(log_{\dfrac{1}{4}}\left(x-5\right)\ge-2\\ \Rightarrow x-5\le16\\ \Leftrightarrow5< x\le21\)
\(a,5^x< 0,125\\ \Leftrightarrow x< -1,292\\ b,\left(\dfrac{1}{3}\right)^{2x+1}\ge3\\ \Leftrightarrow2x+1\le-1\\ \Leftrightarrow2x\le-2\\ \Leftrightarrow x\le-1\)
c, Điều kiện: x > 0
\(log_{0,3}x>0\\ \Leftrightarrow x>1\)
d, Điều kiện: \(x>\dfrac{3}{2}\)
\(ln\left(x+4\right)>ln\left(2x-3\right)\\ \Rightarrow x+4>2x-3\\ \Leftrightarrow x< 7\)
Vậy \(\dfrac{3}{2}< x< 7\)
Đáp án C.
Ta có:
Đặt t = log5 x thì bất phương trình trở thành t 2 - 4 t - 4 ≤ 0 .