K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Đáp án A

P T ⇔ 5 2 2 x − 2 5 2 x + m 2 = 0 → t − 5 2 x t 2 − 2 t + m 2 = 0     1 .  

PT ban đầu có 2 nghiệm trái dấu ⇔ 1  có hai nghiệm thỏa mãn 0 < t   1 < 1 < t 2 .  

Suy ra Δ ' 1 > 0 t 1 + t 2 > 0 t 1 t 2 > 0 t 1 − 1 t 2 − 1 < 0 ⇔ 1 − m 2 > 0 2 > 0 m 2 > 0 t 1 t 2 − t 1 + t 2 + 1 < 0

⇔ − 1 < m < 1 m ≠ 0 m 2 − 2 + 1 < 0 ⇔ − 1 < m < 1 m ≠ 0 .  

19 tháng 6 2019

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).

a, Thay m = 5 vào biểu thức ta đc 

 \(x^2-2\left(5+6\right)x+5-4=0\)

\(x^2-33x+1=0\)

\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)

b, Ta có :

\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)

\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)

Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x 

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

NV
21 tháng 11 2021

a.

Phương trình có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m-1\right)\left(m-4\right)< 0\)

\(\Rightarrow1< m< 4\)

b. 

Phương trình có 2 nghiệm dương khi (ko có chữ phân biệt?):

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}>0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\4< m\le5\end{matrix}\right.\)

c.

Phương trình có 2 nghiệm âm khi:

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}< 0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\1< m< 3\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

5 tháng 12 2021

D

NV
5 tháng 12 2021

Pt đã cho có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Leftrightarrow-1< m< 2\)

NV
16 tháng 1 2024

Đây là toán Viet của lớp 10 chứ ko phải lớp 9, lớp 9 chưa học giải BPT bậc 2 để giải các điều kiện cho bài toán này:

\(\Delta'=\left(m+1\right)^2-2\left(m+2\right)\left(m-4\right)=-m^2+6m+17\)

- Pt có 2 nghiệm pb trái dấu khi:

\(ac=2\left(m+2\right)\left(m-4\right)< 0\Rightarrow-2< m< 4\)

- Pt có 2 nghiệm cùng dấu khi:

\(\left\{{}\begin{matrix}\Delta'=-m^2+6m+17\ge0\\ac=2\left(m+2\right)\left(m-4\right)>0\\\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3-\sqrt{26}\le m\le3+\sqrt{26}\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3-\sqrt{26}\le m< -2\\4< m\le3+\sqrt{26}\end{matrix}\right.\) (1)

- Pt có 2 nghiệm cùng âm khi pt có 2 nghiệm cùng dấu đồng thời:

 \(x_1+x_2=\dfrac{m+1}{m+2}< 0\Rightarrow-2< m< -1\) (2)

Kết hơp (1);(2) \(\Rightarrow m\in\varnothing\)