K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

Để A thuộc Z thì \(\frac{n^2-3n+1}{n+1}\) thuộc Z 

        <=> \(\frac{n\left(n+1\right)-4\left(n+1\right)+5}{n+1}\) thuộc Z 

       <=>\(\frac{\left(n+1\right)\left(n-4\right)+5}{n+1}\)thuộc Z 

=> (n+1)(n-4)+5 chia hết cho n+1

=>5 chia hết cho n+1

hay n+1 thuộc Ư(5)

Mà Ư(5)={-5;-1;1;5}

Ta có bảng sau 

       n+1                      -5                               -1                          1                           5


        n                         -6                               -2                         0                           4

 Vậy n \(\varepsilon\){ -6;-2;0;4}

      Tích nha ^^!

22 tháng 1 2016

học 24h tích nha

 

DT
19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)

Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)

\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)

Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)

19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
 

\(3n-4\) \(-5\) \(-1\) \(1\) \(5\)
\(n\) \(-\dfrac{1}{3}\) \(1\) \(\dfrac{5}{3}\) \(3\)

Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên

4 tháng 12 2017

Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)

Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)

\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)

Vậy............

4 tháng 12 2017

Ta có : A= (3n+2)/(n-1)

= [3.( n-1)+5]/(n-1)

=3+[5/(n-1)]

Để A nguyên thì 5 phải chia hết cho n-1

=> n-1 thuộc ước của 5

Ta có bảng sau

x-11-15-5
x206-4

Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }

Đề bài yêu cầu gì?

5 tháng 4 2022

đề bài

16 tháng 7 2018

Để \(N\) nguyên thì \(n^2+3n-2⋮n^2-3\)

\(\Rightarrow n^2-3+3n+1⋮n^2-3\)

\(\Rightarrow3n+1⋮n^2-3\)

\(\Rightarrow\left(3n+1\right)\left(3n-1\right)⋮n^2-3\)

\(\Rightarrow9n^2-1⋮n^2-3\)

\(\Rightarrow9n^2-27+26⋮n^2-3\)

\(\Rightarrow9\left(n^2-3\right)+26⋮n^2-3\)

\(\Rightarrow26⋮n^2-3\)

\(\Rightarrow n^2-3\inƯ\left(26\right)=\left\{-26,-13,-2,-1,1,2,13,26\right\}\)

Vì \(n^2\ge0\Rightarrow n^2-3\ge-3\) nên \(n^2-3\in\left\{-2,-1,1,2,13,26\right\}\)

\(\Rightarrow n^2\in\left\{1,2,4,5,16,29\right\}\)

Vì \(n^2\) là số chính phương nên \(n^2\in\left\{1,4,16\right\}\)

\(\Rightarrow n\in\left\{-1,1,-2,2,-4,4\right\}\)

Thử lại thấy \(n\in\left\{-1,1,-2,2,4\right\}\) thỏa mãn

28 tháng 7 2018

AI K MK MK SẼ K LẠI 

10 tháng 7 2017

a) Ta có : \(\frac{2n-3}{n-1}=\frac{2n-2-1}{n-1}=\frac{2.\left(n-1\right)-1}{n-1}=2-\frac{1}{n-1}\)

Lập bảng ta có :

n-11-1
n20

b) Ta có : \(\frac{3n+1}{n-2}=\frac{3n-6+7}{n-2}=\frac{3.\left(n-2\right)+7}{n-2}=3+\frac{7}{n-2}\)

Lập bảng ta có :

n-21-17-7
n319-5
7 tháng 8 2017

a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)

b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Tới đây lập bảng tìm n.

\(A=\frac{3n-2}{n+1}=\frac{3x+3-5}{n+1}=\frac{3.\left(x+1\right)-5}{n+1}=3+\frac{-5}{n+1}\)(ĐKXĐ:\(n\ne-1\))

Đề A nguyên thì \(3+\frac{-5}{n+1}\)nguyên

Có \(3\in Z\)nên để \(3+\frac{-5}{n+1}\)nguyên thì \(\frac{-5}{n+1}\)nguyên

Để \(\frac{-5}{n+1}\)nguyên thì \(-5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-5\right)\)

\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)

\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\)(Đều thỏa mãn ĐK)

Vậy......