Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a) 7 n + 13 v à 2 n + 4
b) 4 n + 3 v à 2 n + 3
c) 18 n + 3 v à 21 n + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
a: \(d=UCLN\left(n+1;n+2\right)\)
\(\Leftrightarrow n+2-n-1⋮d\)
hay d=1
b: \(d=UCLN\left(2n+2;2n+3\right)\)
\(\Leftrightarrow2n+3-2n-2⋮d\)
hay d=1
a: \(\left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy: với mọi số nguyên n thì n+2 và n+3 là hai số nguyên tố cùng nhau
a, Gọi d = ƯCLN(7n+13;2n+4).
=>2(7n+13) ⋮ d; 7(2n+4) ⋮ d
=> [(14n+28) – (14n+6)] ⋮ d
=> 2 ⋮ d => d = {1;2}
Nếu d = 2 thì (7n+3) ⋮ 2 => [7(n+1)+6] ⋮ 2 => 7(n+1) ⋮ 2
Mà ƯCLN(7,2) = 1 nên (n+1) ⋮ 2 => n = 2k–1
Vậy để 7n+13 và 2n+4 nguyên tố cùng nhau thì n ≠ 2k–1
b, Gọi d = ƯCLN(4n+3;2n+3)
=> (4n+3) ⋮ d; 2(2n+3) ⋮ d
=> [(4n+6) – (4n+3)] ⋮ d
=> 3 ⋮ d => d = {1;3}
Nếu d = 3 thì (4n+3) ⋮ 3 => [3(n+1)+n] ⋮ 3 => n ⋮ 3 => n = 3k
Vậy để 4n+3 và 2n+3 nguyên tố cùng nhau thì n ≠ 3k
Gọi d là ước chung lớn nhất của n+1 và 3n+4.
Ta có: n+1 chia hết cho d ; 3n+4 chia hết cho d.
=> (3n+4) - (n+1) chia hết cho d
=(n+n+n+4) - (n+1)
=2n+3 chia hết cho d
Ta có: 2n+3 chia hết cho d và n+1 chia hết cho d
=> (2n+3) - (n+1) chia hết cho d
= (n+n+3) - (n+1)
= ( n+2) chia hết cho d
Ta có: (n+2) chia hết cho d và (n+1) chia hết cho d
=> (n+2) - (n+1) chia hết cho d
= 1 chia hết cho d.
=> d=1
===============> n+1 và 3n+4 là hai số nguyên tố cùng nhau.
Cách hồi nãy cũng hơi dài dòng! Còn 1 cách nữa:
Gọi d là ứơc chung của hai số n+1 và 3n+4.
Ta có: 3n+4 chia hết cho d và n+1 cũng chia hết cho d
=> (3n+4) - (n+1) chia hết cho d
= [1.(3n+4)] - [3.(n+1)]
= (3n+4) - (3n+3)
=1 chia hết cho d
=> d=1
===============> n+1 và 3n+4 là hai số nguyên tố cùng nhau