K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

25/608 tick nha cho tròn 60

22 tháng 1 2016

A = \(\frac{1}{3}\left(\frac{3}{8.11}+\frac{3}{11.14}+.......+\frac{3}{605.608}\right)\)

   = \(\frac{1}{3}\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{605}-\frac{1}{608}\right)\)

   = \(\frac{1}{3}\left(\frac{1}{8}-\frac{1}{608}\right)=\frac{1}{3}.\frac{76-1}{608}=\frac{1}{3}.\frac{75}{608}=\frac{25}{608}\)

28 tháng 7 2016

Ta có : 

\(A=\frac{1}{8.11}+\frac{1}{11.14}+..+\frac{1}{605.608}\)

\(3A=\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{605.608}\)

\(3A=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{605}-\frac{1}{608}\)

\(3A=\frac{1}{8}-\frac{1}{608}\)

\(A=\frac{75}{608}:3\)

\(A=\frac{25}{608}\)

Ủng hộ mk nha !!! ^_^

28 tháng 7 2016

Ta có: \(A=\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{605.608}\)

\(\Rightarrow3A=\frac{3}{8.11}+\frac{3}{11.14}+....+\frac{3}{605.608}\)

\(\Rightarrow3A=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+....+\frac{1}{605}-\frac{1}{608}\)

\(\Rightarrow3A=\frac{1}{8}-\frac{1}{608}=\frac{75}{608}\)

\(\Rightarrow A=\frac{75}{608}:3=\frac{25}{608}\)

Vậy \(A=\frac{25}{608}\)

Ủng hộ cho mik nha bạn?

3 tháng 2 2017

 ta có A =\(\frac{1}{5\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot15}+...+\frac{1}{605\cdot608}\)

3A =\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{605\cdot608}\)

3A =\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\)

3A=\(\frac{1}{5}-\frac{1}{608}\)

3A=\(\frac{603}{3040}\)A =\(\frac{201}{3040}\)

3 tháng 2 2017

Đặt A=\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\)

      3A=\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\right)\)

      3A=\(3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\right)\)

      3A=3.\(\left(\frac{1}{5}-\frac{1}{608}\right)\)

       A=\(\frac{201}{3040}\)

7 tháng 8 2016

\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)

\(S=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{97.100}\right)\)

\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}.\frac{49}{100}=\frac{49}{300}\)

7 tháng 8 2016

Ta có: \(S=\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{97.100}.\)

\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{97.100}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow S=\frac{49}{100}:3=\frac{49}{300}\)

Vậy \(S=\frac{49}{300}\)

CHÚC BẠN HỌC TỐT

15 tháng 8 2019

a)1/5.8+1/8.11+1/11.14+...+1/x(x+3)=101/1540

<=>1/3(3/5.8+3/8.11+...+3/x(x+3)     =101/1540

<=>1/3(1/5-1/8+1/8-1/11+...+1/x-1/x+3=101/1540

<=>1/5-1/x+3=303/1540<=>1/x+3=1/308

<=>x+3=308<=>x=305

Nguồn CHTT, hihi !

15 tháng 8 2019

Tham gia event này đi mọi người https://olm.vn/hoi-dap/detail/227766827875.html

9 tháng 4 2015

đề sai rồi 13/15.4 chứ

B.1/7=1/7.(5/2.1+4/1.11+3/11.2+1/2.15+13/15.14)

B.1/7=5/2.1.7+4/1.11.7+3/11.2.7+1/2.15.7+13/15.4.7)

B.1/7=5/2.7+4/7.11+3/11.14+1/14.15+13/15.28

B.1/7=1/2-1/7+1/7-1/11+1/11-1/14+1/14-1/15+1/15-1/28

B.1/7=1/2-1/28=13/28

B=13/28:1/7

B=13/4

28 tháng 6 2016

\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2006.2009}\)

\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)

\(F=\frac{1}{5}-\frac{1}{2009}\)

\(F=\frac{2004}{10045}\)

28 tháng 6 2016

\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{1}{11.14}+...+\frac{3}{2006.2009}\)


\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)

\(F=\frac{1}{5}-\frac{1}{2009}\)

\(F=0\)

24 tháng 7 2018

      \(\frac{1}{5.8}\)\(+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)

\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=3.\frac{98}{1545}\)

\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{103}\)

\(\Leftrightarrow x+3=103\)

\(\Leftrightarrow x\)\(=103-3\)

\(\Leftrightarrow x\)\(=100\)

Vậy x = 100

~~~~~~~Hok tốt~~~~~~~~

24 tháng 7 2018

ta có \(\frac{1}{5.8}+\frac{1}{8.11}+...\frac{1}{x.\left(x+3\right)}\)\(=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}\right)\)\(=\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{98}{1545}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}=\frac{98}{515}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}=\frac{1}{103}\)

\(\Rightarrow x+3=103\)

\(\Rightarrow x=100\)

nhớ k nha

                                   

30 tháng 8 2020

\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)

30 tháng 8 2020

Tính

\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)

18 tháng 3 2017

a, \(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

=> x + 3 = 308

     x = 308 - 3

     x = 305

b, \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)

\(\Rightarrow\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{1}{2}.\frac{3984}{1993}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1992}{1993}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{1993}\)

=> x + 1 = 1993

     x = 1993 - 1

     x = 1992

18 tháng 3 2017

a ,\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)

\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3\)

\(x=305\)