cho tam giác ABC, diểm D trên cạnh BC. Từ D kẻ các đường thẳng ss cới AB cắt AC tại E, song song với AC cắt AB tại F. chứng minh tam giác AED= tam giác DFA. chứng minh tam giác AEF= tam giác DFE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AEDF có AE//DF và AF//DE nên tứ giác AEDF là hình bình hành
do đó \(\hept{\begin{cases}AE=DF\\AF=DE\\\widehat{AED}=\widehat{DFA}\end{cases}\Rightarrow\Delta AED=\Delta DFA\left(c.g.c\right)}\)
cũng từ tứ giác AEDF là hình bình hành do đó \(\hept{\begin{cases}AE=DF\\AF=DE\\\widehat{EAF}=\widehat{FDE}\end{cases}\Rightarrow\Delta AEF=\Delta DFE\left(c.g.c\right)}\)
a: Xét tứ giác BFED có
FE//BD
DE//BF
Do đó: BFED là hình bình hành
Suy ra: DE=BF
mà AE=BF
nên ED=EA
hay ΔAED cân tại E
a, Vì : ED//AB → ED//FB
EF//BC → EF//BD
Nên FEDB là hình bình hành → FB = ED
Mà AE = FB (gt) →AE = ED → Δ EAD là tam giác cân và cân tại E
b, Vì Δ EAD là tam giác cân tại E
nên ta có góc ADE = góc DAE(1)
VÌ DE // AB nên ta có góc ADE =góc BAD (2)
Từ (1) và (2) ta có góc DAE =góc BAD
hay AD là phân giác của góc A
a) Chứng minh BDEF là hình bình hành Þ ED= BF = AE Þ DAED cân ở E.
b) Ta có B A D ^ = D A C ^ (vì cùng bằng A D E ^ ) Þ AD là phân giác Â
Chứng minh tứ giác AEDF là hình thoi
Þ EF là phân giác của A E D ^