Cho số nguyên dương n và hệ số của x n - 2 trong khai triển Newton của x - 1 4 n bằng 31.Khi đó n bằng
A. 31
B. 33
C. 32
D. 124
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: 2 ≤ n ∈ N
Ta có
A n + 3 3 - 6 C n + 1 3 = 294 ⇔ n + 3 ! n ! - 6 n + 1 ! 3 ! n - 2 ! = 294 ⇔ n + 3 n + 2 n + 1 - n + 1 n n - 1 = 294 ⇔ n 2 + 2 n - 48 = 0 ⇔ n = 6 n = - 8
So với điều kiện chọn n = 6
Với n = 6 ta có 2 x 4 y + y 2 x 2 6 = ∑ k = 0 6 C 0 k 2 x 4 y 6 - k y 2 x 2 k = ∑ k = 0 6 C 0 k 2 6 - k x 24 - 6 k y - 6 + 3 k
Giả thiết bài toán cho ta 24 - 6 k - 6 + 3 k = 18 ⇔ k - 3 2 = 0 ⇔ k = 3
Khi k = 3 ta thu được số hạng thỏa mãn yêu cầu bài toán là: C 6 3 2 2 x 6 y 3 = 160 x 6 y 3
Đáp án D
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)
\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)
Đạo hàm 2 vế:
\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)
Thay \(x=1\)
\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)
\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)
\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)
\(\Rightarrow n=5\)
\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)
\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)
Đáp án A
Hệ số của x n − 2 trong khai triển x − 1 4 n là: C n 2 . − 1 4 2 . x n − 2
Ta có: C n 2 . − 1 4 2 = 31
⇔ n ! n − 2 ! 2 ! = 496 ⇔ n n − 1 = 992 ⇔ n = 32.
Chọn C
Ta có:
Vì hệ số của x n - 2 trong khai triển Newton của x - 1 4 n bằng 31 nên ta có:
Vì n nguyên dương nên n = 32